The like-sign dimuon asymmetry and New Physics

Miguel Nebot

CFTP-IST Lisbon 😈

September 11th 2014, Vienna

2 New Physics

3 Conclusions

Based on work done in collaboration with: G.C. Branco (Lisbon), F.J. Botella & A. Sánchez (Valencia), arXiv:1402.1181 Meson evolution

$$i \frac{d}{dt} \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix} = \mathscr{H} \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix}$$

 \mathscr{H} has hermitian and anti-hermitian parts M and $-i\Gamma/2$:

$$\mathscr{H} = M - \frac{i}{2} \, \Gamma \,, \ M = M^{\dagger} \,, \ \Gamma = \Gamma^{\dagger}$$

■ To second order in (weak) perturbation theory

$$M]_{ij} = m_0 \delta_{ij} + \langle i | \mathscr{H}_{\mathbf{w}} | j \rangle + \sum_n \mathcal{P} \frac{\langle i | \mathscr{H}_{\mathbf{w}} | n \rangle \langle n | \mathscr{H}_{\mathbf{w}} | j \rangle}{m_0 - E_n}$$
$$[\Gamma]_{ij} = 2\pi \sum_n \delta(m_0 - E_n) \langle i | \mathscr{H}_{\mathbf{w}} | n \rangle \langle n | \mathscr{H}_{\mathbf{w}} | j \rangle$$

■ Genuinely mixing CP violation

 $\operatorname{Im}\left(\Gamma_{12}/M_{12}\right) \neq 0$

• Eigenvalues of \mathscr{H} : $\mu_H \& \mu_L$

$$\Delta \mu = \mu_H - \mu_L = \Delta M - \frac{i}{2} \Delta \Gamma = 2\sqrt{[\mathcal{H}]_{12} [\mathcal{H}]_{21}}$$

• Some algebra gives, for $B_d^0 - \overline{B}_d^0$ and $B_s^0 - \overline{B}_s^0$ systems, (i.e. at leading order in Γ_{12}/M_{12})

$$\Delta M = 2|M_{12}| \& \Delta \Gamma = -\Delta M \operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right) \& A_{SL} = \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)$$

Branco, Lavoura & Silva; Bigi & Sanda

Dispersive amplitude (SM):

$$M_{12}^{(q)} = \frac{G_F^2 M_W^2}{12\pi^2} M_{B_q} f_{B_q}^2 B_{B_q} \eta_B S_0(x_t) (V_{tb} V_{tq}^*)^2$$

from $\Box \Box = + \Box \Xi$

Absorptive amplitude:

$$\frac{\Gamma_{12}^{(q)}}{M_{12}^{(q)}} = -\left(\frac{\Gamma_{12}^{cc}}{M_{12}^{(q)}}(V_{cb}V_{cq}^*)^2 + 2\frac{\Gamma_{12}^{uc}}{M_{12}^{(q)}}(V_{ub}V_{uq}^*V_{cb}V_{cq}^*) + \frac{\Gamma_{12}^{uu}}{M_{12}^{(q)}}(V_{ub}V_{uq}^*)^2\right)$$
from from from the second sec

■ HQE expansion

$$-\Gamma_{12}^{cc} = 10^{-4} c , \quad -2\Gamma_{12}^{uc} = 10^{-4} (2c-a) , \quad -\Gamma_{12}^{uu} = 10^{-4} (b+c-a)$$
 with

$$a = 10.5 \pm 1.8$$
, $b = 0.2 \pm 0.1$, $c = -53.3 \pm 12.0$

Beneke et al. PLB459, PLB576, Ciuchini et al. JHEP0308 Lenz & Nierste JHEP0706, Lenz 1405.3601

Important: in powers of (m_c/m_b)², only c ≠ 0 at zero-th order
Rewrite (N.B. V_{ab}V^{*}_{ag} ≡ λ^a_{ba})

$$\left[\frac{\Gamma_{12}^{(q)}}{M_{12}^{(q)}}\right]_{\rm SM} = K_{(q)} \frac{c\left(\lambda_{bq}^u + \lambda_{bq}^c\right)^2 - a\lambda_{bq}^u\left(\lambda_{bq}^u + \lambda_{bq}^c\right) + b\left(\lambda_{bq}^u\right)^2}{\left(\lambda_{bq}^t\right)^2},$$

Clamorous call for use of 3×3 unitarity of CKM

$$\begin{split} \lambda_{bq}^{u} + \lambda_{bq}^{c} + \lambda_{bq}^{t} &= 0, \\ & \left[\frac{\Gamma_{12}^{(q)}}{M_{12}^{(q)}} \right]_{\rm SM} = K_{(q)} \left[c + a \, \frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} + b \, \left(\frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} \right)^2 \right] \end{split}$$

■ Some numbers (exp):

$$\begin{split} \left[A_{SL}^{d}\right]_{\exp} &= (0.3 \pm 2.3) \cdot 10^{-3} \,, \quad \left[\Delta \Gamma_{d}\right]_{\exp} = (0.001 \pm 0.012) \, \mathrm{ps}^{-1} \\ \left[A_{SL}^{s}\right]_{\exp} &= (-3 \pm 5) \cdot 10^{-3} \,, \qquad \left[\Delta \Gamma_{s}\right]_{\exp} = (0.091 \pm 0.008) \, \mathrm{ps}^{-1} \end{split}$$

■ Some numbers (fit):

$$\begin{bmatrix} A_{SL}^d \end{bmatrix}_{\rm SM} = (-4.2 \pm 0.7) \cdot 10^{-4} , \quad [\Delta \Gamma_d]_{\rm SM} = (2.6 \pm 0.4) \cdot 10^{-3} \, {\rm ps}^{-1} \\ \begin{bmatrix} A_{SL}^s \end{bmatrix}_{\rm SM} = (2.0 \pm 0.4) \cdot 10^{-5} , \qquad [\Delta \Gamma_s]_{\rm SM} = (0.090 \pm 0.008) \, {\rm ps}^{-1}$$

- Central to SM expectations:
 - **1** $M_{12}^{(q)}$ dominated by a single weak amplitude
 - **2** use of 3×3 unitarity of CKM

The D0 like-sign dimuon asymmetry A_{SL}^b

- **1** $b\bar{b}$ pairs are strongly produced
- **2** they hadronize into B_d or B_s mesons/antimesons
- **3** they decay weakly
- I Semileptonic decays tag the nature of the decaying B depending on the charge of the produced $\ell: B \leftarrow \ell^+$ or $\bar{B} \leftarrow \ell^-$

Without $B_q - \bar{B}_q$ oscillations,

both decays cannot give same charge leptons

Asymmetry

$$A_{SL}^b = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

 N^{++} $(N^{--}):$ # of events with both mesons decaying to μ^+ (μ^-)

The D0 like-sign dimuon asymmetry A_{SL}^b

• In terms of the individual $B^0_d - \bar{B}^0_d$ and $B^0_s - \bar{B}^0_s$ systems, A^b_{SL} is a weighted combination

$$A_{SL}^b = \frac{A_{SL}^d + gA_{SL}^s}{1+g}$$

with

$$g = f \frac{\Gamma_d}{\Gamma_s} \frac{(1-y_s^2)^{-1} - (1+x_s^2)^{-1}}{(1-y_d^2)^{-1} - (1+x_d^2)^{-1}}, \quad y_q = \frac{\Delta\Gamma_q}{2\Gamma_q}, \ x_q = \frac{\Delta M_{B_q}}{\Gamma_q}$$

f is the B_s - B_d fragmentation fraction ratio in the B sample

$$A_{SL}^b \simeq 0.59 A_{SL}^d + 0.41 A_{SL}^s$$

■ N.B. Simplified picture

Borissov & Hoeneisen PRD87

The D0 like-sign dimuon asymmetry A_{SL}^b

• From the same SM fit

$$\left[A^b_{SL}\right]_{\rm SM} = (-2.3 \pm 0.4) \cdot 10^{-4}$$

• "but" the measured value is

$$\left[A_{SL}^b\right]_{\rm D0} = \left(-4.96 \pm 1.69\right) \cdot 10^{-3}$$

D0 collaboration PRD89

Stubborn 3σ "situation"

D0 collaboration PRD82, PRD84, PRL105

- Burst of activity with New Physics (NP) contributions to $M_{12}^{(s)}$ and/or $\Gamma_{12}^{(s)}$ in specific models
 - SUSY: Ko & Park PRD82, Parry PLB694, Ishimori et al. PTP 126
 - Extra Dimensions: Datta et al. PRD83, Goertz & Pfoh PRD84
 - \blacksquare Z': Deshpande et al. PRD82, Alok et al. JHEP1107,

Kim et al. PRD83, Kim et al. PRD88

- Left-Right: Lee & Nam PRD85
- Extended scalar sector:

Jung et al. JHEP1011, Dobrescu et al. PRL105, Trott & Wise JHEP1011, Bai & Nelson PRD82

- Axigluons: Chen & Faisel PLB696
- Extended fermionic sector:

Hou et al. PRD75, Soni et al. PRD82, Chen et al. JHEP1011, Botella et al. PRD79, JHEP1212, Alok et al. PRD86

- "Model independent" analyses with NP in $B_q^0 \bar{B}_q^0$ mixings: Ligeti et al. PRL105, Bauer & Dunn PLB696,
 - Bobeth & Haisch APPB 44

• NP in $\Delta \Gamma_d$

Bobeth et al. JHEP06 (2014)

• NP in SM highly suppressed additional contributions

Descotes-Genon & Kamenik PRD87

. . .

 Scenarios in which the CKM matrix is no longer 3 × 3 unitary, it is, on the contrary, part of a larger unitary matrix Branco et al. PLB306, Eyal & Nir JHEP9909, Barenboim et al. PLB422, Barenboim & Botella PLB433, Botella, Branco & MN PRD79, JHEP1212

$$V_{ub}V_{uq}^* + V_{cb}V_{cq}^* + V_{tb}V_{tq}^* \equiv -N_{bq} \neq 0$$

• Modified $M_{12}^{(q)}$ with generic structure

 $M_{12}^{(q)} \propto \left((V_{tb}V_{tq}^*)^2 S_0(x_t) + (V_{tb}V_{tq}^*) N_{bq} C_1 + N_{bq}^2 C_2 \right)$

 $C_1, C_2 \in \mathbb{R}$, model dependent, common to both $M_{12}^{(d)}$ and $M_{12}^{(s)}$ Controlled removal of SM ingredients

1 $M_{12}^{(q)}$ dominated by a single weak amplitude

2 use of 3×3 unitarity of CKM

Input

$ V_{ud} $	0.97425 ± 0.00022	$ V_{us} $	0.2252 ± 0.0009
$ V_{cd} $	0.230 ± 0.011	$ V_{cs} $	1.023 ± 0.036
$ V_{ub} $	0.00375 ± 0.00040	$ V_{cb} $	0.041 ± 0.001
$ V_{tb} $	0.95 ± 0.05	γ	$(68 \pm 8)^{\circ}$
$A_{J/\Psi K_S}$	0.68 ± 0.02	$A_{J/\Psi\Phi}$	0.01 ± 0.07
$\sin(2\bar{\alpha})$	0.10 ± 0.15	$\sin(2\bar{\beta}+\gamma)$	0.95 ± 0.40
ΔM_{B_d}	$(0.507 \pm 0.004) \text{ ps}^{-1}$	ΔM_{B_s}	$(17.768 \pm 0.024) \text{ ps}^{-1}$
$\Delta \Gamma_d$	$(0.001 \pm 0.012) \text{ ps}^{-1}$	$\Delta\Gamma_s$	$(0.091 \pm 0.008) \text{ ps}^{-1}$
A_{SL}^s	$(3 \pm 5) \times 10^{-3}$	A^d_{SL}	$(3 \pm 23) \times 10^{-4}$
A^b_{SL}	$(-4.96 \pm 1.69) \times 10^{-3}$		

Individual SL asymmetries

Dimuon asymmetry A_{SL}^b

- Enhancement falls short of the mark
- How is this enhancement "accommodated"?

Correlations – Individual SL asymmetries

Correlations – Dimuon asymmetry A_{SL}^b

bs & bd "independence"

SM

$$\begin{split} \lambda_{bq}^{u} + \lambda_{bq}^{c} + \lambda_{bq}^{t} &= 0\\ \left[\frac{\Gamma_{12}^{(q)}}{M_{12}^{(q)}}\right]_{\rm SM} &= K_{(q)} \left[c + a \frac{\lambda_{bq}^{u}}{\lambda_{bq}^{t}} + b \left(\frac{\lambda_{bq}^{u}}{\lambda_{bq}^{t}}\right)^{2}\right] \end{split}$$

... not anymore

• NP with deviation from 3×3 unitarity in CKM

$$\begin{split} \lambda_{bq}^{u} + \lambda_{bq}^{c} + \lambda_{bq}^{t} &= -\lambda_{bq}^{4} \\ \frac{\Gamma_{12}^{(q)}}{M_{12}^{(q)}} &= K_{(q)}S_{0}(x_{t}) \begin{bmatrix} \frac{c\left(\lambda_{bq}^{u} + \lambda_{bq}^{c}\right)^{2} - a\left(\lambda_{bq}^{u}\lambda_{bq}^{u} + \lambda_{bq}^{c}\right) + b\left(\lambda_{bq}^{u}\right)^{2}}{\left(\lambda_{bq}^{t}\right)^{2}S_{0}(x_{t}) + 2\left(\lambda_{bq}^{t}\lambda_{bq}^{b}\right)C_{1} + \left(\lambda_{bq}^{4}\right)^{2}C_{2}} \end{bmatrix} ,\\ A_{J/\Psi K_{S}} &= \sin 2\bar{\beta} \neq \sin 2\beta \qquad A_{J/\Psi \Phi} = \sin 2\bar{\beta}_{s} \neq \sin 2\beta_{s} \end{split}$$

Pictorial

(j) bd unitarity triangle with NP in mixings.

Unitarity deviations

Summary/Conclusions

- **•** CKM not 3×3 unitary, *model independent* approach
 - breaks the SM $|V_{ub}|$ -sin 2β connection with NP in $B_d^0 \bar{B}_d^0 \Rightarrow$ enhancement of A_{SL}^d
 - 2 NP in $B_s^0 \bar{B}_s^0 \Rightarrow$ enhancement of A_{SL}^s
- Enhancement of A_{SL}^b up to $-2 \cdot 10^{-3}$ (N.B. SM fit $-2.3 \cdot 10^{-4}$)
- \blacksquare . . . requires $|V_{ub}|$ \uparrow and/or $A_{J/\Psi\Phi}$ \uparrow
- Closer to the D0 measurement $(-4.96 \pm 1.69) \times 10^{-3}$,
 - but insufficient
- Results similar to NP in mixings $M_{12}^{(q)} = \left[M_{12}^{(q)}\right]_{\text{SM}} r_q^2 e^{-i 2\phi_q}$, direct access to unitarity deviations to distinguish
- $\Delta \Gamma_d$ enhancement "for free"
- Wait for LHCb progress . . .

Backup – Example

Example for an up vector-like quark model, complete analysis with EW precision observables, rare decays, ...

Botella, Branco & MN, JHEP1212, 1207.4440

Backup – $\Delta \Gamma_d$

