Lifetime measurements in **B** decays at LHCb

Francesca Dordei on behalf of the LHCb collaboration

Heidelberg University, Physikalisches Institut

8th International Workshop on the CKM Unitary Triangle 3-12 September 2014 Vienna, Austria

Outline

Motivation

- Probing QCD Predictions
- Probing CP violation
- 2 Challenges of precision measurements

3 Recent Results

- $B^0_s
 ightarrow D^-_s \, \pi^+$ [arXiv:1407.5873]
- $B^0_s
 ightarrow K^+ \, K^-$ [arXiv:1406.7204]
- $\Lambda^0_b o J/\psi \ p \ K^-$ [Phys. Lett. B734 (2014) 122]
- $H_b
 ightarrow J/\psi \; X$ family [JHEP 04 (2014) 114]
- Ξ_b^-, Ξ_b^0 and Ω_b^- baryons [Phys. Lett. B736 (2014) 154] and [Phys. Rev. Lett. 113 (2014) 032001]

Topics NOT covered by this talk:

 $B^0_s\to D^-_s D^+_s X$ lifetime Semileptonic $B^+_c\to J/\psi\,\mu^+\nu\,_\mu X$ lifetime

Theoretical status of *b*-flavoured hadron lifetimes

Lifetimes of heavy *b*-hadrons are dominated by the weak decay of the *b*-quark: spectator model.

Predictions made from series expansion

 \hookrightarrow Heavy Quark Expansion (HQE)

$$\Gamma = \Gamma_0 + \frac{\Lambda^2}{m_b^2} \Gamma_2 + \frac{\Lambda^3}{m_b^3} \Gamma_3 + \dots$$

- decay of a free heavy *b*-quark: $au_{B^0_d} \sim au_{B^+} \sim au_{B^0_s} \sim au_{\Lambda^0_b}$
- separation between mesons and baryons: $\tau_{B^+} \sim \tau_{B^0_d} \sim \tau_{B^0_s} > \tau_{\Lambda^0_b}$
- spectator quark/s involved: $au_{B^+} > au_{B^0_d} \sim au_{B^0_s} > au_{\Lambda^0_h}$

Theoretical status of *b*-flavoured hadron lifetimes

Different *b* species have distinct lifetimes \implies light quark(s) cannot be ignored. Difficult interplay between weak and strong forces!

Predictions made from series expansion

 \rightarrow Heavy Quark Expansion (HQE)

$$\Gamma = \Gamma_0 + \frac{\Lambda^2}{m_b^2} \Gamma_2 + \frac{\Lambda^3}{m_b^3} \Gamma_3 + \dots$$

- decay of a free heavy *b*-quark: $au_{B^0_d} \sim au_{B^+} \sim au_{B^0_s} \sim au_{\Lambda^0_b}$
- separation between mesons and baryons: $au_{B^+} \sim au_{B^0_d} \sim au_{B^0_s} > au_{\Lambda^0_b}$
- spectator quark/s involved: $au_{B^+} > au_{B^0_d} \sim au_{B^0_s} > au_{\Lambda^0_b}$

Theoretical status of *b*-flavoured hadron lifetimes

• The study of the *b*-hadron lifetimes is a good probe of QCD predictions.

Most precise predictions in lifetime ratios:

$$\frac{r_1}{r_2} = 1 + \frac{\Lambda^2}{m_b^2}\Gamma_2' + \frac{\Lambda^3}{m_b^3}\Gamma_3' + \dots$$

Predicted range for different lifetime ratios

$$\frac{\tau_{B^+}}{\tau_{B^0_d}} = 1.04^{+0.07}_{-0.03} \quad \frac{\tau_{B^0_s}}{\tau_{B^0_d}} = 1.001 \pm 0.002 \quad \frac{\tau_{\Lambda^0_b}}{\tau_{B^0_d}} = 0.935 \pm 0.054 \quad \frac{\tau_{\Xi^0_b}}{\tau_{\Xi^+_b}} = 0.95 \pm 0.06$$

Theoretical predictions from: A. Lenz, arXiv:1405.3601 (2014). Find more in: Beneke NPB639 (2002), Tarantino EPJC33 (2004), Gabbiani *et al* PRD68 (2003) and PRD70 (2004).

HQE is used to extract values of $|V_{cb}|$ and $|V_{ub}|$. Important to test its predictions for b-hadron lifetimes!

Effective lifetime

- *b*-baryons and charged *b*-mesons \Rightarrow decay is purely exponential.
- Neutral *B* mesons \Rightarrow mixing can occur.

Effective lifetime: measured using a single exponential to model the proper time distribution

$$\Gamma(t) \propto A_H e^{-t/\tau_H} + A_L e^{-t/\tau_L} \rightarrow A_{eff} e^{-t/\tau_{eff}}$$

 \rightarrow ignoring the decay-time difference between the two mass-eigenstates ($\Delta \Gamma_d \approx 0, \Delta \Gamma_s$ sizeable)

Effective lifetime in CP eigenstates

Fleischer, Kneijens [arXiv:1109.5115]

In CP eigenstates, effective lifetime is sensitive to $\Delta\Gamma_s$ and Φ_s (mixing induced QP phase). Considering a $B_s^0(\overline{B}_s^0) \to f$ transition the untagged decay time distribution is:

$$\Gamma(t) \propto (1 - \mathcal{A}_{\Delta \Gamma_s}) e^{-(\Gamma_L t)} + (1 + \mathcal{A}_{\Delta \Gamma_s}) e^{-(\Gamma_H t)}$$

with $\mathcal{A}_{\Delta\Gamma_s}$ is a function of ϕ_s . If we assume no Q^{p} then for the CP eigenstates $\mathcal{A}_{\Delta\Gamma_{s}} = \pm 1$:

$$\label{eq:CP} \begin{array}{c} \mbox{CP even: e.g. } B^0_s \rightarrow {\cal K}^+ \, {\cal K}^- \ \Rightarrow \Gamma_L \\ \\ \mbox{CP odd: e.g. } B^0_s \rightarrow J/\psi \, f_0(980) \Rightarrow \Gamma_H \end{array}$$

Expanding the effective lifetime in $y_s = \Delta \Gamma_s / 2\Gamma_s$ and using $\tau_{B_s^0} = 2/(\Gamma_L + \Gamma_H) = \Gamma_s^{-1}$:

$$\frac{\tau_{\text{eff}}^{i}}{\tau_{B_{s}^{0}}} = 1 + \mathcal{A}_{\Delta\Gamma_{s}} \mathbf{y}_{s} + [2 - (\mathcal{A}_{\Delta\Gamma_{s}})^{2}]\mathbf{y}_{s}^{2} + O(\mathbf{y}_{s}^{3})$$

Alternative way to extract ϕ_s and $\Delta\Gamma_s$: $\begin{cases} complementary \ to \ e.g. \ B_s^0 \rightarrow J/\psi \phi \\ No \ flavour \ tagging \ needed \end{cases}$

Lifetime measurements in B-decays

How to experimentally measure lifetimes

CHALLENGE: biased proper time distributions

- B hadron candidates often selected using decay time biasing quantities (e.g. decay products significantly displaced from the PV)
- Implicit biases, e.g. geometrical and reconstruction acceptances

Absolute measurement

- Include the acceptance to correct the decay time distribution.
- PROs: no other input needed.
- CONSs: good understanding of acceptance needed.
 Data driven methods to obtain greater precision.

Resolution

Decay time

Acceptance

 $\text{Distribution} = \left[\boldsymbol{e}^{\frac{-t}{\tau}} \otimes \text{Res}(t, t') \right] \cdot \text{Acc}(t')$

How to experimentally measure lifetimes

CHALLENGE: biased proper time distributions

- B hadron candidates often selected using decay time biasing quantities (e.g. decay products significantly displaced from the PV)
- Implicit biases, e.g. geometrical and reconstruction acceptances

Relative measurement

- Measure lifetime X relative to control mode (*CM*) with well known lifetime and similar topology
- PROs: systematic uncertainties due to acceptance cancel in the ratio
- CONSs: irreducible systematic from input lifetime

$$t = \frac{(DV - PV)}{\beta \gamma} = \frac{(DV - PV) \cdot Mass_B}{p}$$

$$R(t) = \frac{A_X(t) \times [e^{-\frac{t}{\tau_X}} \otimes G(t, \sigma_X)]}{A_{CM}(t) \times [e^{-\frac{t}{\tau_{CM}}} \otimes G(t, \sigma_{CM})]}$$

Assuming acceptance *A* is the same and resolution effects cancel:

$$\boldsymbol{R}(t) = \boldsymbol{R}_{0} \cdot \boldsymbol{e}^{-t(\tau_{X}^{-1} - \tau_{CM}^{-1})}$$

$B^0_s o K^+ K^-$ with ${\cal L}=1~{ m fb}^{-1}$

The final state K^+K^- is a *CP*-even eigenstate:

- \rightarrow $\tau_{KK} \equiv \tau_L$ with the assumption $A_{\Delta\Gamma}$ = -1
 - ~ completely CP-even eigenstate
 - $\mathcal{A}_{\Delta\Gamma}^{SM} = -0.972 \pm 0.012$ Fleischer, Kneijens [Eur.Phys.J.C71:1532,2011]

Re-analysis of the 2011 dataset using a data-driven method \Rightarrow Absolute measurement.

• Use the per-event acceptance function in the fit

$B^0_s ightarrow K^+ K^-$ with $\mathcal{L}=1~{ m fb}^{-1}$

[arXiv:1406.7204]

Available statistics: $10471 \pm 121 B_s^0$ signal events after full selection.

 $au_{\it KK}~=~1.407~\pm~0.016~{
m (stat)}\pm0.007~{
m (syst)}~{
m ps}$

- Main systematic contribution: misidentified $B_s^0 \rightarrow h^+ h^-$ backgrounds (5 fs)
- Used to extract $\mathcal{A}_{\Delta\Gamma} = -0.87 \pm 0.17 \pm 0.13$ (compatible with SM)
- Consistent with the previous independent measurement from LHCb

$H_b ightarrow J/\psi \, X$ family with ${\cal L}=1~{ m fb}^{-1}$

bsolute measurement			
• $B^+ \rightarrow J/\psi K^+$:	$\textit{N}_{\rm sig}=229434\pm503$		
• $B^0 \to J/\psi K^* (892)^0$:	$\textit{N}_{\rm sig}=70534\pm312$		
• $B^0 \rightarrow J/\psi K_S^0$:	$\textit{N}_{\rm sig} = 17045\pm175$		
• $B_s^0 \rightarrow J/\psi \phi$:	$N_{\rm sig}=18662\pm152$		
• $\Lambda_b \rightarrow J/\psi \Lambda$:	$N_{\rm sig}=3960\pm89$		

- Several effects bias the measured lifetime already in the simulation!
- Data-driven method to remove the bias.

$H_b ightarrow J/\psi \, X$ family with ${\cal L}=1~{ m fb}^{-1}$

Absolute measurement			
• $B^+ \rightarrow J/\psi K^+$:	$\textit{N}_{\rm sig}=229434\pm503$		
• $B^0 \to J/\psi K^* (892)^0$:	$\textit{N}_{\rm sig}=70534\pm312$		
• $B^0 \rightarrow J/\psi K^0_S$:	$\textit{N}_{\rm sig} = 17045\pm175$		
• $B_s^0 \rightarrow J/\psi \phi$:	$\textit{N}_{\rm sig} = 18662\pm152$		
• $\Lambda_b \rightarrow J/\psi \Lambda$:	$\textit{N}_{\rm sig}=3960\pm89$		

[JHEP 04 (2014) 114]

- Remaining bias no longer statistically significant.
- The same strategy can be applied on data without using simulated data.
- Unbinned fit in mass and decay time to extract lifetime.

$H_b \rightarrow J/\psi X$ family with $\mathcal{L} = 1 \text{ fb}^{-1}$

Lifetime	Value [ps]	World average 2013 [ps]
$\tau_{B^+ \to J/\psi K^+}$	$1.637 \pm 0.004 \pm 0.003$	1.641 ± 0.008
$\tau_{B^0 \to J/\psi K^*(892)^0}$	$1.524 \pm 0.006 \pm 0.004$	1.519 ± 0.007
$\tau_{B^0 \rightarrow J/\psi K_S^0}$	$1.499 \pm 0.013 \pm 0.005$	1.519 ± 0.007
$\tau_{\Lambda^0_b \to J/\psi\Lambda}$	$1.415 \pm 0.027 \pm 0.006$	1.429 ± 0.024
$\tau_{B_s^0 \to J/\psi \phi}$	$1.480 \pm 0.011 \pm 0.005$	$\textbf{1.429} \pm \textbf{0.088}$

•	From a theoretical point of view
	lifetime ratios are robust quantities
	\Rightarrow test of HQE.

Particle and antiparticle lifetimes ٠ ratio ⇒ test of CPT

Ratio	Value
$ au_{B^+}/ au_{B^0 o J/\psi K^{*0}}$	$1.074 \pm 0.005 \pm 0.003$
$\tau_{B^0_s \to J/\psi \phi}/\tau_{B^0 \to J/\psi K^{*0}}$	$0.971 \pm 0.008 \pm 0.004$
$\tau_{\Lambda_b^0}/\tau_{B^0 \to J/\psi K^{*0}}$	$0.929 \pm 0.018 \pm 0.004$

$ au_{B^+}/ au_{B^-}$	$1.002 \pm 0.004 \pm 0.002$
$\tau_{\Lambda_b^0}/\tau_{\overline{\Lambda}_b^0}$	$0.940 \pm 0.035 \pm 0.005$
$\tau_{B^0 \to J/\psi K^{*0}}/\tau_{\overline{B}^0 \to J/\psi \overline{K}^{*0}}$	$1.000 \pm 0.008 \pm 0.003$

 $\Delta\Gamma_d/\Gamma_d = -0.044 \pm 0.025 \pm 0.011$ compatible with $|\Delta\Gamma_d/\Gamma_d|^{\rm SM} = (3 \pm 1.2) \cdot 10^{-3}$ [arXiv:0412007]

 $\Lambda_b^0 \rightarrow J/\psi p K^-$ lifetime - Relative measurement

$\Lambda^0_b ightarrow J/\psi ho K^-$ lifetime - $\mathcal{L}=3\,{ m fb}^{-1}$

[Phys. Lett. B734 (2014) 122]

- $\Lambda^0_b \rightarrow J/\psi p K^-$ previously unobserved decay mode.
- Relative measurement wrt B⁰ lifetime.
- Most precise measurement to date!

Main systematic: decay-time acceptance.

 $\frac{\tau_{\Lambda_b^0}}{\tau_{B^0}} = 0.974 \pm 0.006 \pm 0.004$

 $\tau_{\Lambda_b^0 \rightarrow J/\psi p K^-}$ = 1.479 ± 0.009 ± 0.010 ps Main systematic: B^0 lifetime uncertainty.

$B^0_s o D^-_s \, \pi^+$ with $\mathcal{L}=$ 1 fb^{-1}

[arXiv:1407.5873]

 $D_s^- \pi^+$ is a **flavour-specific** final state, f_{fs} :

Between
$$B^0_s o D^-_s \pi^+, \, D^-_s o K^- K^+ \pi^-$$
 and

•
$$B^0 \rightarrow D^- \pi^+, D^- \rightarrow K^+ \pi^- \pi^-$$

same number of tracks, very different *D* lifeting

• $B^+ \to \overline{D}^0 \pi^+, \overline{D}^0 \to K^+ \pi^-$

different number of tracks, similar D lifetimes

•
$$B^+ \to \overline{D}^0 \pi^+, \overline{D}^0 \to K^+ \pi^- \pi^+ \pi^-$$

different number of tracks, similar D lifetimes

$B^0_s o D^-_s \, \pi^+$ with ${\cal L}=1~{ m fb}^{-1}$

[arXiv:1407.5873]

Three consistent results fully correlated, the one with the smallest uncertainty is chosen

$$\frac{\tau_{fs}(\overline{B}_{s}^{0})}{\tau(\overline{B}^{0})} = 1.010 \pm 0.010 \pm 0.008$$

$$\bigcup$$

$$\tau_{fs}(\overline{B}_{s}^{0}) = 1.535 \pm 0.015 \pm 0.012 \pm 0.007 \text{ps}$$

Stat Syst PDG

- Most precise measurement to date.
- Consistent with previous measurement and HQE predictions.
- Main systematic: lifetime acceptance.

$\Xi_b^-,\,\Omega_b^-$ and Ξ_b^0 lifetimes - $\mathcal{L}=$ 3 fb^{-1}

[Phys. Lett. B736 (2014) 154]

- Signal decays: $\Xi_b^- \to J/\psi \Xi^-$ and $\Omega_b^- \to J/\psi \Omega^-$.
- Absolute measurement: use similar methods to analysis of $H_b \rightarrow J/\psi X$.
- Decay-time acceptance taken from simulation.

•
$$au_{\Xi_b^-} = 1.55^{+0.10}_{-0.09} \pm 0.03 ext{ ps}$$
 and

$$au_{\Omega_b^-} = 1.54^{+0.26}_{-0.21}\pm 0.05~\text{ps}$$

- Main systematic: decay-time acceptance.
- Most precise measurement to date!

[Phys. Rev. Lett. 113 (2014) 032001]

- Signal decay: $\Xi_b^0 \to \Xi_c^+ \pi^-$.
- Relative measurement wrt the $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ lifetime.

•
$$\frac{\tau_{\Xi_b^0}}{\tau_{\Lambda_b^0}} = 1.006 \pm 0.018 \pm 0.010$$

$$\tau_{\Xi_b^0} = 1.477 \pm 0.026 \pm 0.014 \pm 0.013 \; \mathrm{ps}$$

- Main systematic: simulated sample size.
- First measurement!

 \Rightarrow

Conclusions

- Recent LHCb measurements give a consistent picture of *b*-hadron lifetimes.
- Good agreement with HQE predictions.
- Experimental ratios known to striking precision.

F. Dordei (Heidelberg University)

Conclusions

- Combination of all LHCb results shows very nice agreement!
- Consistent with SM prediction $\Delta\Gamma_s^{
 m SM}$ = 0.087 \pm 0.021 $m ps^{-1}$ [A. Lenz and U. Nierste, arXiv:1102.4274]

Thanks for your attention!

8th International Workshop on the CKM Unitary Triangle 8-12 September 2014 Vienna, Austria

The theory of measurement

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Backup Slides

Status at beginning of 2014

Kneijens [arXiv:1305.6834]

 $\tau_{J/\psi\,f_0} = [1.700 \pm 0.040 \text{ (stat)} \pm 0.026 \text{ (syst)}] \text{ ps} \\ \text{[Phys. Rev. Lett. 109 (2012) 152002]}$

F. Dordei (Heidelberg University)

Backup Slides

$B_{\rm s}^0 \to J/\psi f_0(980)$ with $\mathcal{L} = 1 \ fb^{-1}$ - Introduction [LHCb-PAPER-2012-017, arXiv: 1207.0878]

The final state $J/\psi f_0(980)$ is a *CP*-odd eigenstate:

- Measured ϕ_s limits $\cos \phi_s > 0.99$ @ 95% CL [LHCb-CONF-2012-002]
- Selection provides > 99.4% @ 95% CL CP-odd sample

[Phys. Rev. D 86, 052006 (2012)]

 $\tau_{J/\psi f_0} \equiv \tau_H$ with the assumption $\mathcal{A}_{\Lambda\Gamma}$ =1

- pure CP-odd eigenstate
- no CP violation

- Decays have very similar kinematics ٠
- Compare signal yields in bins of decay time
- Fit for width difference: $\tau_{J/\psi f_0}^{-1} \tau_{J/\psi k^{*0}}^{-1}$
- Use well known B^0 lifetime to extract B^0_s lifetime

Lifetime measurements in B-decays

Backup Slides

$B^0_s ightarrow J/\psi \, f_0(980)$ with $\mathcal{L}=1 \, \textit{fb}^{-1}$ - Results

[LHCb-PAPER-2012-017, arXiv: 1207.0878]

$B_{\rm s}^0 \rightarrow J/\psi f_0(980)$ with $\mathcal{L} = 1 \ fb^{-1}$ - Results

[LHCb-PAPER-2012-017, arXiv: 1207.0878]

⁰⁹⁻⁰⁹⁻²⁰¹⁴ 26/21

VELO reconstruction acceptance

- VELO reconstruction efficiency nearly identical for different decay products.
- Measure the efficiency on data using $B^+ \rightarrow J/\psi K^+$ control sample: **Tag and Probe** - technique.
- Correct data for the inefficiency weighting differently every event.

27 / 21

Λ_b^0 lifetime - $\mathcal{L} = 3 \, \mathrm{fb}^{-1}$

Yield as a function of decay-time $\overbrace{P_{0}^{0}}^{ge} \xrightarrow{10^{5}} \begin{array}{c} LHCb \\ B^{0} \rightarrow J/\psi K^{*0} \\ 10^{3} \\ 10^{3} \\ 0 \\ 2 \\ 0 \\ 0 \\ 10^{4} \\ 0 \\ 10^{2} \\ 0 \\ 10^{2} \\ 0 \\ 10^{4} \\ 0 \\ 10^{2} \\ 0 \\ 10^{4} \\ 10^{2} \\ 0 \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\$

Most precise measurement to date!

 $\frac{\tau_{\Lambda_b^0}}{\tau_{B^0}} = 0.974 \pm 0.006 \pm 0.004$

Main syst: acceptance slope.

 $au_{\Lambda^0_b
ightarrow J/\psi
ho K^-}$ = 1.479 \pm 0.009 \pm 0.010 ps

Main syst: B⁰ lifetime uncertainty.

Ξ_b^- and Ω_b^- lifetimes - $\mathcal{L} = \mathbf{3} \, \mathrm{fb}^{-1}$

[Physics Letters B 736, arXiv:1405.1543 (2014)]

- Dominant systematic from upper decay time acceptance ("beta factor") from MC;
- Λ⁰_b lifetime consistent with other LHCb measurements.

F. Dordei (Heidelberg University)

Lifetime measurements in *B*-decays

$\overline{B}^0_s o D^+_s D^-_s$ effective lifetime - $\mathcal{L}=3\,{ m fb}^{-1}$

[arXiv:1312.1217 [hep-ex]]

- Final state is CP-even, ϕ_s is small ٠ $\implies \tau_{\rm eff} \approx 1/\Gamma_{\rm c}$
- Measure lifetime relative to a similar final state topology decay, $B^- \rightarrow D^0 D_s^-$, with well-known lifetime:

 $\tau_{B^-} = 1.641 \pm 0.008 \text{ ps}$

The relative rate is given by:

$$\frac{\Gamma_{\mathcal{B}_{s}^{0}(\overline{\mathcal{B}}_{s}^{0}) \rightarrow \mathcal{D}_{s}^{+}\mathcal{D}_{s}^{-}}(t)}{\Gamma_{\mathcal{B}^{-}(\mathcal{B}^{+}) \rightarrow \mathcal{D}^{0}(\overline{\mathcal{D}}^{0})\mathcal{D}_{s}^{-}(\mathcal{D}_{s}^{+})}(t)} \propto e^{-\alpha t}$$

where:
$$\alpha = 1/\tau_{\overline{B}^0_s \rightarrow D^+_s D^-_s} - 1/\tau_{B^-}$$

Main systematic is from acceptance.

F. Dordei (Heidelberg University)

 $\tau^{\mathrm{eff}}_{\overline{B}^0_s o D^+_s D^-_s}$

Lifetime measurements in B-decays

Λ_b^0 lifetime - The end of the puzzle

- Long-standing puzzle of the Λ⁰_b lifetime now solved!
- LHCb has the most precise single measurement.
- Last measurements consistent with the original predictions of the HQE.
- Ratio with the *B*⁰ lifetime close to unity.

Plot from S. Stone presentation, FPCP Marseilles, May 2014.

Experiment LHCb (2014) Average LHCb 1/fb (2014) [J/\UA] LHCb 3/fb (2014) [J/\u03c6 pK-] LHCb 1/fb (2013) [J/\u03c6pK] CMS (2012) [J/ψΛ] ATLAS (2012) [J/ψΔ] D0 (2012) $[J/\psi \Lambda]$ CDF (2011) [J/\u03c6A] CDF (2010) $[\Lambda_{c}^{+}\pi^{-}]$ D0 (2007) [J/ψA] D0 (2007) [Semileptonic decay] DLPH (1999) [Semileptonic decay] ALEP (1998) [Semileptonic decay] OPAL (1998) [Semileptonic decay] CDF (1996) [Semileptonic decay]