B meson decay constants from FNAL, NRQCD, and HISQ action

Heechang Na University of Utah

CKM 2014 at Vienna University of Technology, Vienna, Austria

Outline

Introduction

- f_B and f_{Bs} in the Standard Model and searching New Physics
- B meson decay constants in lattice QCD

Lattice methods for heavy quarks

- FNAL, HISQ, and NRQCD action
- Important ingredients

Calculations from HPQCD

- Heavy HISQ method
- NRQCD: ratio method
- NRQCD: 2+1+1 MILC lattice + physical pion mass

Calculations from Fermilab/MILC

- FNAL method
- Future plan
- Summary

Introduction

Leptonic decay of B meson

- f_{Bs} : no $B_s \rightarrow I \nu$ leptonic decays in tree level
 - However, one can define the matrix elements, and it is useful.
 - $Br(B_s \rightarrow \mu^+ \mu^-)$ in the Standard Model
 - Around 30% of the total errors came from f_{Bs}

Introduction

B meson decay constants have been calculated from lattice QCD extensively.

- FLAG: Flavor Lattice Averaging Group
 - Aoki et al., 1310.8555

Introduction

• B meson decay constants have been calculated from lattice QCD extensively.

- I will focus on the solid green squares on $N_f=2+1$ and 2+1+1
 - MILC gauge configurations using staggered fermion actions:
 - HPQCD and Fermilab/MILC
- Note that there are many new calculations reported at Lattice 2014.
 - RBC/UKQCD, Ishikawa et al., ALPHA, and ETM

Lattice methods for heavy quarks

- Heavy quarks need a special treatment to put on the lattice.
 - Typical lattice size ~ 2 GeV
 - Charm quark ~1 GeV, bottom quark ~ 4 GeV

• NRQCD

- Theoretically well known, easy to tune the quark mass
- Large operator matching errors
- Heavy HISQ for bottom (HTC: Heavier Than Charm)
 - HISQ (Highly Improved Staggered Quark)
 - It is so highly improved!
 - Leading error starts at O(α_s (am_h)2 v²/c²) and O((am_h)⁴v²/c²) (If am_c=0.6, it is about 2%)
 - So, one can treat charm quarks as other u,d, and s quarks
 - No operator matching needed, easy to tune the quark mass
 - For coarse lattice (a~0.15fm), $am_c \sim 0.85$: it worked great! (a~0.09fm, $am_c \sim 0.6$)
 - Simulate heavy HISQ quark: lighter than bottom, up to $am_h = 0.85$
 - Extrapolate to the bottom quark mass using HQET

Fermilab interpretation

- Clover Wilson action with Fermilab interpretation
- Correct continuum and heavy quark limit
- Systematically improvable in arbitrarily high orders of 1/mq_

Lattice methods for heavy quarks

Important ingredients

- Light quark mass
 - Chiral extrapolation \rightarrow Chiral interpolation
- Smaller lattice spacings
 - 0.03 fm lattice
- Statistics
- Heavy quark discritization errors
- Matching
 - The current renormalization
- Electromagnetic effects and isospin breaking

Resources

- MILC N_f=2+1 asqtad gauge configurations
- MILC $N_f=2+1+1$ HISQ gauge configurations with physical pion mass

• f_{Bs} from the Heavy HISQ method

C. McNeile et al. (HPQCD) PRD 85 (2012) 031503

- Using MILC asqtad staggered N_f=2+1dynamic gauge configurations
- HISQ fermion action for the strange and heavy valence quarks
- Five lattice spacings (0.15fm, 0.12fm, 0.09fm, 0.06fm, and 0.045fm)

f_{Bs}/f_B from NRQCD

HN et al. (HPQCD) PRD 86 (2012) 034506

- Using MILC asqtad staggered N_f=2+1dynamic gauge configurations
- NRQCD for the b quark, and HISQ for the light and strange quarks
- Two lattice spacings (0.12fm, and 0.09fm)
- Matching heavy-light currents with NRQCD and HISQ quarks

• $f_B = 191(9)$ MeV, $f_{Bs} = 228(10)$ MeV, and $f_{Bs}/f_B = 1.188(18)$

f_B from the NRQCD + Heavy HISQ method

- Very accurate f_{Bs}/f_B from the NRQCD method
 - $f_{Bs}/f_B = 1.188(18)$
- \bullet And, f_{Bs} from the Heavy HISQ method.
 - f_{Bs}=225(4) MeV
- $f_B = 191(9)$ MeV : without the ratio, 5% error
- \rightarrow f_B = 189(4) MeV : 2.1% error

HN et al. (HPQCD) PRD 86 (2012) 034506

• NRQCD + N_f=2+1+1 + physical pion mass

R. Dowdall et al. (HPQCD) PRL 110 (2013) 222003

- MILC N_f=2+1+1 gauge configurations
 - with physical pion mass → very small chiral "interpolation" errors
- O(v⁴) Improved NRQCD
- Matching errors: $4\% \rightarrow 1.2\%$

NRQCD + N_f=2+1+1 + physical pion mass

- MILC N_f=2+1+1 gauge configurations
 - with physical pion mass → very small chiral "interpolation" errors
- O(v⁴) Improved NRQCD
- Matching errors: $4\% \rightarrow 1.2\%$
- Even more precise ratio: $f_{Bs}/f_B = 1.205(7)$

R. Dowdall et al. (HPQCD) PRL 110 (2013) 222003

CKM 2014. Heechang Na, Univ of Utah

Calculations from Fermilab/MILC

Wilson clover action with Fermilab interpretation

- MILC N_f=2+1 asqtad ensembles
- asqtad light quarks and Fermilab heavy quarks
- Mostly nonperturbative renormalization (mNPR)
- HMrS χ PT (Heavy Meson Rooted Staggered Chiral PT)
- After five preliminary reports
 - LAT2006 094, LAT2007 310, LAT2008 278, LAT2009 249, LAT2010 317

Calculations from Fermilab/MILC

• Next steps!

- MILC N_f=2+1 asqtad ensembles
 - With the full set of the whole ensembles

Calculations from Fermilab/MILC

• Next steps!

- MILC N_f=2+1 asqtad ensembles
 - With the full set of the whole ensembles
- MILC N_f=2+1+1 HISQ ensembles
 - Clover wilson with Fermilab interpretation
 - Heavier Than Charm (HTC) HISQ
 - \bullet for f_{Bs} as well as f_B
 - 0.03fm lattices (963×288) are under way
 - 0.03fm \rightarrow 6.6GeV : one can calculate fully relativistic bottom quarks!
 - New techniques
 - Random-wall sources
 - Covariant Approximation Averaging

Summary

- B meson decay constants calculations with Staggered sea quarks have been very successful!
 - Two independent collaborations and three different heavy quark discritization methods deliver the consistent results
 - 2% errors for f_B and f_{Bs} and 1% errors for f_{Bs}/f_B
 - The errors are well understood: full error budget
 - The second generation MILC ensembles including the sea charm quark effects and physical pion mass.
- Fully utilizing the MILC $N_f=2+1+1$ HISQ ensembles is forthcoming.
 - Including physical pion mass
 - Better discritization errors
 - Better statistics with new techniques
 - Stay tuned!