DH Cavity Design Summary

L. Ficcadenti, R. Calaga, J. Tuckmantel

General Comments:

Higher harmonic cavity \rightarrow manipulate bunch profile

 $V_2 \leq \frac{1}{2} V_1$ (8 MV maximum)

Sync. freq. spread with DH system \rightarrow increased stability threshold

First Attempt:

Scaled model of 400 MHz cavities

Cavity design somewhat straight forward, ensure tunability

Bulk Nb or Nb-Coated is still for discussion

Challenges:

Main limitation may come from Power Coupler (? MV/cavity) May require variable coupler to passively damp during Inj/Ramp Similar 4-cavity configuration w/o cold-warm transitions assumed

Cavity Design

LHC 400 MHz

Freq [MHz]	400.79	801.4	
L _{cell} [mm]	320	140	
Aper [mm]	300	150	
α [deg]	20 ⁰	10 ⁰	
$r_{1}^{}/r_{2}^{}$ [mm]	104/25	52/12.5	

Scaled 800 MHz

Freq [MHz]	400.79	801.4	
V [MV]	2.0	1.0	
R/Q [Ω]	44	45.5	
$E_{_{pk}}\left[MV/m ight]$	11.8	14.6	
B _{pk} [mT]	27.3	28.2	

Cavity Optimization

Move HOMs farther away from fundamental mode and close to their cutoff.

Performance of fundamental mode is far from limits, so some compromise can be accepted to aid HOM damping

Other techniques exist fluted/enlarged pipes, but come with drawbacks as well.

Power Coupler, \sim Factor 2 Scaling

Cavity Power & Coupling

SPL like coupler (~200-250 kW)

The HOM Saga

For high current machines

- HOM damping (below instability thresholds)
- Power extraction (resonant or broadband)

Ferrite Absorbers (Broadband butdirty for SRF + cold-warm transition)

Notch Filters (Narrow-band and sensitive)

Waveguides (Bulky @800MHz & thermal losses)

LHC Type HOM Couplers

400 MHz

Freq	Mode	Qext
500 MHz	TE ₁₁₁	137
534 MHz	TM ₁₁₀	93
779 MHz	TM	270

800 MHz

Freq	Mode	R/Q [Ω]	Qext
1.03 GHz	TE ₁₁₁	2	137
1.09 GHz	TM ₁₁₀	12	93
1.7 GHz	TM	11	Above cutoff

General Principle \rightarrow Use two couplers

Fundamental Mode Leakage into HOMs

HOM Damping, Example

Damping quite effective with 2 sets of narrow-band and broadband couplers (Qext \sim 100-200)

Imp Spectrum, 800 MHz

Ref: Imp. Spectrum, 400 MHz

Alternative HOM Damping Schemes

Standard LHC Module: No cold-warm transitions

Academically interesting but practically difficult in multi-cavity CM

Hybrid HOM Coupler

An attempt to combine the narrow/broadband coupler (Advantage to reduce # of HOM couplers)

Next Steps

Where to put them

Obvious choice is P4, check space requirements

Impedance evaluation (8 cavities) & budget Resonant excitation & power handling (P μ R/Q . I² \rightarrow 100's watts) Check compatibility with crab crossing

Mechanical design of the cavity

Cavity tuning, LF etc.. to define the final geometry (EN-MME) Power coupler, variable or not ? Prototyping (?) of cavity and HOM couplers

Nb coating on Cu-substrate always a possibility Will need some R&D time to establish the