

University of London

Quantitative effects of neutron irradiation on silicon radiation detectors

Gordon Davies

(King's College London)

on behalf of the

WODEAN collaboration

Can we find the concentrations of the different defects?

Outline

- Use TRIM as a guide to the amount of damage.
- We can separate the damage into 'point defects' and disordered regions.
- One example: I_2O and E4: leakage currents?
- What are the limits of our techniques?

Samples

- n-type, [P] ~ 1e12 cm⁻³,
- oxygen $[O] 5e17 \text{ cm}^{-3}$,
- carbon $[C] < 5e15 \text{ cm}^{-3}$.
- irradiations at the TRIGA reactor, fluence up to 3e16 cm⁻².
- cooled by water, stored ~ $-20 \,^{\circ}$ C.

Largest fluence, 3x10¹⁶ cm⁻², gives 3x10¹⁵ cm⁻³ tracks. Typical knock-out energy of Si atom is 50 keV. TRIM simulation of damage created by a 50 keV Si ion:

Each track has about 700 vacancies.

Number of Vacancies

- Most of the damage (95%) is in the large disordered regions.
- But 5 % is in small damage events (V, V₂, V₃...)
- The small damage will have well-defined energy levels and so *can be measured accurately*.

Summary so far...

- TRIM suggests that we can separate the damage into 'point defects' and disordered regions.
- One example of point defects: I₂O and E4: leakage currents?

Number of Vacancies

Di-interstitials I₂

- Each 50 keV PKA produces about 11 double vacancies by direct displacement, according to TRIM.
- From proton irradiations, it appears that each V_2 also results in one I_2 , which is mobile and combines with O.
- [I₂O] should be *produced* in proportion to the fluence ...

Apply the radiation damage model (as for electron irradiations):

$I_2 O$

- $I_2 O$ is not proportional to the fluence.
- It is not very stable:
- $\tau = \tau_{o} \exp((E/kT))$,
- $\tau_{o} = 4 \times 10^{-14} \text{ s}, E = 1.16 \pm 0.1 \text{ eV}$ (Murin).
- In an irradiation lasting time t, with I₂ produced at a rate r per second,
- $[I_2O] = r\tau [1 exp(-t/\tau)].$
- Hence, τ, and hence the irradiation temperature can be found:

I₂O measured and fitted.

The time constant for the annealing gives an irradiation temperature of 62 °C.

E4 and E5

Bleka et al APL 92, 132102 (2008)

Annealing of E4 and I_2O . Bleka et al APL **92**, 132102 (2008)

Summary so far...

- TRIM says that we can separate the damage into 'point defects' and disordered regions.
- We can understand point defect production.
- What are the limits of our techniques?
- Photoluminescence.

Damage by neutrons is similar to implantation damage by Si ions. Use information from Si-ion implants.

1e16 cm⁻² neutrons create 7e17 cm⁻³ vacancies.
1e11 cm⁻² 3-MeV Si ions create 1e18 cm⁻³ vacancies.

Comparison of neutron & ion damage; no anneal

Neutron damage

0

3 MeV Si ions; 100 C anneal, 1 hour

Comparison of neutron and ion damage

• To get similar levels of damage requires 1e5 times more neutrons than 3 MeV Si ions.

Lifetime of PL from W centre; Si ion implanted.

Non-radiative decay activated with 11.2, 11.6 meV.

Energy can be transferred to and from the W centres.

Final summary

- Using TRIM as a guide to the amount of damage,
- We can separate the damage into 'point defects' and disordered regions.
- Point defects can be understood with our conventional modelling.
- Example: I₂O and E4.
- Our techniques are all limited example of lifetime quenching for photoluminescence.