

Comparison of proton damage in thin FZ, MCz and epitaxial silicon detectors

L. Andricek (b), <u>D. Eckstein</u> (a), E. Fretwurst (a), J. Lange (a), G. Lindström (a), H.G. Moser (b), I. Pintilie (c), R. Richter (b), R. Röder (d)

(a) University of Hamburg

- (b) MPI-Semiconductor Laboratory Munich
- (c) NIMP Bucharest
- (d) CiS Institute for Microsensoric Erfurt

Introduction

• Motivation for thin detectors

Advantage: lower depletion voltage ($V_{fd} \propto d^2$) lower leakage current ($I_{rev} \propto d$) \rightarrow lower noise, lower power dissipation smaller collection time ($t_c \propto d$) \rightarrow less charge carrier trapping <u>Draw-back</u>: smaller signal for mips (signal $\propto d$) larger capacitance ($C_{det} \propto 1/d$) \rightarrow larger electronic noise

\rightarrow find an optimal thickness

- Different Materials and thicknesses studied
- Irradiated with 23GeV protons at CERN
- Studied annealing behaviour, fluence dependence
- Continuation of work presented in Talk of E.Fretwurst in Nov.07 RD50 Workshop

Material under investigation

Material	Cond. type	Orientation	N _{eff,0} [10 ¹³ cm ⁻³]	d [µm]
EPI-ST (1)	Ν	<111>	2.6	75
EPI-DO (2)	N	<111>	2.6	75
EPI-ST (1)	Ν	<100>	1.5/0.88	100/150
EPI-DO (2)	N	<100>	1.3/0.80	100/150
FZ-50 (3)	N	<100>	3.3	50
FZ-100 (4)	N	<100>	1.4	100
MCz (5)	N	<100>	0.42	100

irradiated with 23GeV protons

(1) Standard detector process (CiS)

(2) Oxygen enriched, diffusion for 24 h at 1100°C (CiS)

(3) Produced in wafer bonding technology (MPI)

(4) Rear side: P diffusion after thinning (CiS)

(5) Rear side: P implantation after thinning (CiS)

Oxygen depth profiles from SIMS measurements - EPI

- EPI-ST, 75 μm: [O] inhomogeneous,
 <[O]> = 9.3 10¹⁶ cm⁻³
- EPI-DO, 75 µm: [O] homogeneous, except surface, <[O]> = 6.0 10¹⁷ cm⁻³
- EPI-ST, 100/150 μm: [O] inhomogeneous,
 <[O]> = 5.4 10¹⁶ / 4.5 10¹⁶ cm⁻³
- EPI-DO, 100/150 μm: [O] more homogeneous
 <[O]> = 2.8 10¹⁷ / 1.4 10¹⁷ cm⁻³

EPI-DO: 24h at 1100°C, oxygen diffuses from Cz substrate

Doris Eckstein, Hamburg University

Oxygen depth profiles from SIMS measurements – FZ and MCz

- MCz: [O] homogeneous, except surface
 <[O]> = 5.2 10¹⁷ cm⁻³
- FZ 50 μm: inhomogeneous
 <[O]> = 3.0 10¹⁶ cm⁻³
- FZ 100 µm: homogeneous, except surface
 <[O]> = 1.4 10¹⁶ cm⁻³

UH

<u>N_{eff} (V_{fd} normalized to 100µm) vs. fluence for EPI</u>

donor removal in low fluence range
Different N_{eff,0}

Dominant donor generation over-compensates acceptor generation

Doris Eckstein, Hamburg University

UΗ

<u>N_{eff} (V_{fd} normalized to 100µm) vs. fluence for FZ, MCz</u>

Introduction rates g_{eff} for large fluence values

<u>N_{eff,0}:</u>

Fz-50 > EPI-75 > EPI-100, FZ-100 > EPI-150 > MCz

<[0]> :

EPI-DO-75 > MCz > EPI-DO-100 > EPI-DO-150 EPI-ST-75 > EPI-ST-100 > EPI-ST-150 > FZ-50 > FZ-100 •g_{eff} <0 for dominant acceptor creation, inversion
 •g_{eff} >0 for dominant donor creation, no inversion

No crrelation, maybe because [O] non-homogeneous?

UH

V_{fd} Annealing at 80°C - EPI

Doris Eckstein, Hamburg University

V_{fd} Annealing at 80°C - for FZ and MCz

Annealing of **ANeff** at 80°C

$$\begin{split} &\Delta N_{eff} = N_{eff,0} - N_{eff} \left(\Phi, t(T) \right) \\ &\Delta N_{eff}(\Phi,t) = N_a(\Phi,t) + N_C(\Phi) + N_Y(\Phi,t) \\ &\text{with} \end{split}$$

$$N_{Y}(\Phi,t) = N_{Y,1}(\Phi,t) + N_{Y,2}(\Phi,t)$$

+ reverse annealing N_{γ}

reverse annealing best described by 2 components: 1. order + 2. order process

In the following, N_{Y} is shown

Reverse annealing Amplitude N_Y

•EPI-DO, FZ 100µm and MCz saturate, FZ 50 µm does not •EPI-ST?

•No correlation with oxygen concentration seen

Generation Current

after annealing for 8min at 80°C: Inear increase damage parameter α varies from 3.8 to 4.3 10⁻¹⁷A/cm Inearly independent on material type

but note, that for FZ 50µm the fluence was corrected

Doris Eckstein, Hamburg University

12th RD50 workshop, Ljubljana, Slovenia, June 2008

UH

CCE decreases with increasing thicknessCCE for ST and DO quite similar

Comparison of TSC studies with Δ_{Neff} from C/V

Doris Eckstein, Hamburg University

UΗ

Summary

 Compared thin Si-detectors processed on different materials (n-type EPI, FZ and MCz) after 23 GeV/c proton irradiation

 N_{eff}: at low fluence dominated by doping removal (P) at high fluence introduction of positive space charge (donors) except FZ-100 μm oxygen effect not or only partially seen
 Inversion/no inversion demonstrated by annealing of V_{fd}

<u>Surprise</u>: no SCSI for FZ-50 µm after proton damage contrary to neutron damage although [O] much smaller compared to EPI or MCz material

 Introduction of donors that over-compensate acceptor generation was seen in TSC a good agreement with macroscopic long-term annealing was demonstrated