Observation of Gamma Irradiation-Induced Suppression of Reverse Annealing in Neutron Irradiated MCZ Si Detectors

Zheng Li<sup>1</sup>, Rubi Gul<sup>1</sup>, Jaakko Harkonen<sup>2</sup>, Martin Hoeferkamp<sup>3</sup>, Jim Kierstead<sup>1</sup>, <u>Jessica Metcalfe<sup>3</sup></u>, and Sally Seidel<sup>3</sup>

> <sup>1</sup>Brookhaven National Laboratory, Upton, NY 11973, USA <sup>2</sup>Helsinki Institute of Physics, Finland <sup>3</sup>University of New Mexico, NM, USA

12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders Ljubljana, Slovenia, 2-4 June 2008

\*This research was supported by the U.S. Department of Energy: Contract No. DE-AC02 -98CH10886

# **Outline**

- 1. Motivation of mixed radiations
- 2. Experimental Overview: samples, radiations and measurements
- **3.** Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation
- 4. Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and RT reverse anneal:a) no gamma radiation during the anneal (control)
  - b) with gamma radiation during the anneal
- **5. Discussion**
- 6. Summary

# Motivation of mixed radiations

- For the development of radiation-hard Si detectors for the SiD BeamCal program for the ILC
  - In the ILC radiation environment, there will be gamma/e and neutron radiation
- **o** Gamma irradiation is known to induce +SC in MCZ Si [1]



1. Z.Li, et al., IEEE Trans. Nucl. Sci.NS-51 (4)(2004)1901.

# Experimental: samples, radiations and measurements

### **V** Samples:

n-type MCZ Si, 390  $\mu m,$  0.25cm², 1000  $\Omega\text{-cm},$  as-processed p<sup>+</sup>-n-n<sup>+</sup> structure (processed at BNL)

| Sample #:                                     | 1480-5               | 1480-13              | 1480-15            | 1480-16            |
|-----------------------------------------------|----------------------|----------------------|--------------------|--------------------|
| Conditions:                                   |                      |                      |                    |                    |
| 1 <sup>st</sup> Radiation:<br>Neutron         |                      |                      |                    |                    |
| (n <sub>eq</sub> /cm <sup>2</sup> )           | 1.5x10 <sup>14</sup> | 1.5x10 <sup>14</sup> | 3x10 <sup>14</sup> | 3x10 <sup>14</sup> |
| 2 <sup>nd</sup> Radiation:<br>Gamma<br>(Mrad) | 500                  | 0                    | 0                  | 500                |

All samples were RT annealed after n-irradiation during the 5.5 month gamma radiation period

### **Radiations**:

Neutrons: 0.8-1 MeV (HF=1.3), 1.5-3x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>, Annular Core Research Reactor in Sandia National Lab Gamma: 1.25 MeV <sup>60</sup>Co, BNL, up to 500 Mrads

✓ Experimental technique: IV, CV, and TCT [2] with red (660 nm) laser (measured at BNL)

2. V. Eremin, N. Strokan, E. Verbitskaya and Z. Li, NIM A 372 (1996) 388-298

# Experimental results of TCT current pulse shapes on<br/>samples after 1 MeV neutron irradiation and beneficial<br/>anneal1.5x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>



#### Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and beneficial 1.5x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup> anneal

20.0µV

6

-220µV



# Experimental results of TCT current pulse shapes on3x1014 n<sub>eq</sub>/cm2samples after 1 MeV neutron irradiation and beneficial<br/>anneal

1480-16, 3x10<sup>14</sup> n/cm<sup>2</sup> (22d RT anneal), MCZ n-type Si, p<sup>+</sup>/n/n<sup>+</sup> structure

Laser front, electron current from p<sup>+</sup> to n<sup>+</sup> Double junction, and SCSI seen







7

## Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and beneficial anneal

3x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>

1480-14, 3x1014 n/cm2 (22d RT anneal), MCZ n-type Si, p+/n/n+ structure

Laser front, electron current from p<sup>+</sup> to n<sup>+</sup> Double junction, and SCSI seen



1480-14, 3x10<sup>14</sup> n/cm<sup>2</sup> (22 d RT anneal), MCZ n-type Si, p<sup>+</sup>/n/n<sup>+</sup> structure Laser back, hole current from n<sup>+</sup> to p<sup>+</sup>

**Tek** Pre∨u 40.0μV -200μV Δ: T @: Δ: 97.8ns @: 82.8ns **Hole transient** Ch1 Area 7.264pVs 740 V D 647 V R 506 V R3 363 V R2 220 V R1 Ch1 1.00mVΩ M4.00ns A Ch1 J 1.20mV 4.00ns 🚺 16.80 % Ref4 1.00mV

Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and 5.5-month RT reverse anneal: a) no gamma radiation during the anneal (control)





Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and 5.5-month RT reverse anneal: b) with gamma radiation during the anneal



1480-13, 1.5x10<sup>14</sup> n/cm<sup>2</sup> (5.5 month RT anneal), MCZ n-type Si, p<sup>+</sup>/n/n<sup>+</sup> structure 1480-5, 1.5x10<sup>14</sup> n/cm<sup>2</sup> +500 Mrad gamma (5.5 month RT anneal), MCZ n-type Si, p<sup>+</sup>/n/n<sup>+</sup> structure



CV data confirms that 500 Mrad gamma radiation suppresses/compensates the RT reverse annealing

# Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and 5.5-month RT reverse anneal: b) with gamma radiation during the anneal



# Discussion

Table I Voltage at the equal double peak ( $V_{DP}$ ), full depletion voltage ( $V_{fd}$ ), and  $N_{eff}$  for n-type MCZ Si detectors after neutron and gamma irradiations and RT anneal. Before any irradiation,  $V_{fd0} = 350$ V,  $N_{eff0} = 2.88 \times 10^{12}$ /cm<sup>3</sup>. Negative sign in  $N_{eff}$  means negative space charge (-SC).

|          | Neutron<br>Fluence                  | Gamma Dose<br>After n irrad.,<br>During<br>5.5 months<br>RT anneal |     | As<br>Irradiated<br>6.6 hours |                       |      |                 |                       |       |                 |                       |
|----------|-------------------------------------|--------------------------------------------------------------------|-----|-------------------------------|-----------------------|------|-----------------|-----------------------|-------|-----------------|-----------------------|
| Sample # | (n <sub>eq</sub> /cm <sup>2</sup> ) | (Mrad)                                                             |     | <b>RT Anneal</b>              |                       | 22 [ | Days RT An      | neal                  | 5.5 m | onths RT A      | nneal                 |
| _        |                                     |                                                                    |     | V <sub>fd</sub>               | N <sub>eff</sub>      |      | V <sub>fd</sub> | N <sub>eff</sub>      |       | V <sub>fd</sub> | N <sub>eff</sub>      |
|          |                                     |                                                                    | (V) | (V)                           | (cm⁻³)                | (V)  | (V)             | (cm <sup>-3</sup> )   | (V)   | (V)             | (cm <sup>-3</sup> )   |
| 1480-5   | 1.5x10 <sup>14</sup>                | 500                                                                | 227 | 276                           | -2.3x10 <sup>12</sup> | 138  | 177             | -1.5x10 <sup>12</sup> | 130   | 170             | -1.4x10 <sup>12</sup> |
| 1480-13  | 1.5x10 <sup>14</sup>                | 0                                                                  | 227 | 275                           | -2.3x10 <sup>12</sup> | 150  | 187             | -1.5x10 <sup>12</sup> | 354   | 400             | -3.3x10 <sup>12</sup> |
| 1480-15  | 3x10 <sup>14</sup>                  | 0                                                                  | -   | -                             | -                     | 412  | 507             | -4.2x10 <sup>12</sup> | >1000 | >1100           | -8.9x10 <sup>12</sup> |
| 1480-16  | 3x10 <sup>14</sup>                  | 500                                                                | 612 | 782                           | -                     | 417  | 508             | -4.2x10 <sup>12</sup> | 440   | 508             | -4.2x10 <sup>12</sup> |

**Red : Reverse anneal** 

**GREEN: Reverse anneal suppression/compensation** 

The reverse annealing in samples irradiated by gamma at 500 Mrad is completely suppressed, regardless of the neutron fluence!

# Discussion

| Table II | Changes | in Neff | during | the 5.5 | month RT | anneal. |
|----------|---------|---------|--------|---------|----------|---------|
|          | Changes | •••••   | Garma  |         |          | amoun   |

| Neutron                    | Gamma            | Changes in N <sub>eff</sub> | Reverse     | +SC would have        |
|----------------------------|------------------|-----------------------------|-------------|-----------------------|
| Fluence                    | dose after n-    | during the 5.5              | annealing   | been generated        |
| $(n_{eq}/cm^2)$            | rad,, during the | month anneal                | suppression | with gamma rad.       |
|                            | 5.5 month        | (Mrad)                      |             | alone                 |
|                            | anneal (Mrad)    | $(cm^{-3})$                 |             |                       |
|                            |                  |                             |             |                       |
| $1.5 \times 10^{14}$       | 500              | $+0.1 \times 10^{12}$       | Completely  | $+1.5 \times 10^{12}$ |
| <b>3.0x10<sup>14</sup></b> | 500              | ~ 0                         | Completely  | $+1.5 \times 10^{12}$ |
| 1.5x10 <sup>14</sup>       | 0                | $-1.8 \times 10^{12}$       | No          | -                     |
| 3.0x10 <sup>14</sup>       | 0                | $-4.7 \times 10^{12}$       | No          | -                     |

o The positive space charge created by 500 Mrad gamma radiation would approximately compensate the negative space charge in the sample irradiated by  $1.5 \times 10^{14} n_{eq}/cm^2$ 

o But it is too small to do same for the sample irradiated by  $3.0 \times 10^{14} n_{eq}/cm^2$ o This points to some interaction between defects generated by gamma and that by reverse annealing in n-irradiated samples 15 **o** SCSI and double peak/double junction in n-irradiated MCZ Si detectors was confirmed

• Subsequent gamma irradiation up to 500 Mrad in a 5.5 month period caused complete suppression of the reverse annealing, which happened in control samples (no gamma radiation)

o This suppression is independent of the neutron fluence (from 1.5-  $3.0x10^{14}\,n_{eq}/cm^2)$ 

• This points to some interaction between defects generated by gamma and that by reverse annealing in n-irradiated samples

o More systematic studies have been planned to confirm the effect