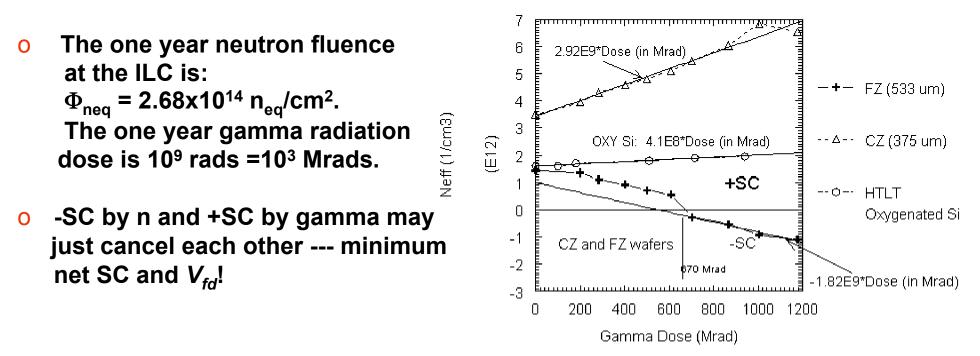
Observation of Gamma Irradiation-Induced Suppression of Reverse Annealing in Neutron Irradiated MCZ Si Detectors

Zheng Li¹, Rubi Gul¹, Jaakko Harkonen², Martin Hoeferkamp³, Jim Kierstead¹, <u>Jessica Metcalfe³</u>, and Sally Seidel³

> ¹Brookhaven National Laboratory, Upton, NY 11973, USA ²Helsinki Institute of Physics, Finland ³University of New Mexico, NM, USA

12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders Ljubljana, Slovenia, 2-4 June 2008


*This research was supported by the U.S. Department of Energy: Contract No. DE-AC02 -98CH10886

Outline

- 1. Motivation of mixed radiations
- 2. Experimental Overview: samples, radiations and measurements
- **3.** Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation
- 4. Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and RT reverse anneal:
 - a) no gamma radiation during the anneal (control)
 - b) with gamma radiation during the anneal
- **5. Discussion**
- 6. Summary

Motivation of mixed radiations

- For the development of radiation-hard Si detectors for the SiD BeamCal program for the ILC
 - In the ILC radiation environment, there will be gamma/e and neutron radiation
- o Gamma irradiation is known to induce +SC in MCZ Si [1]

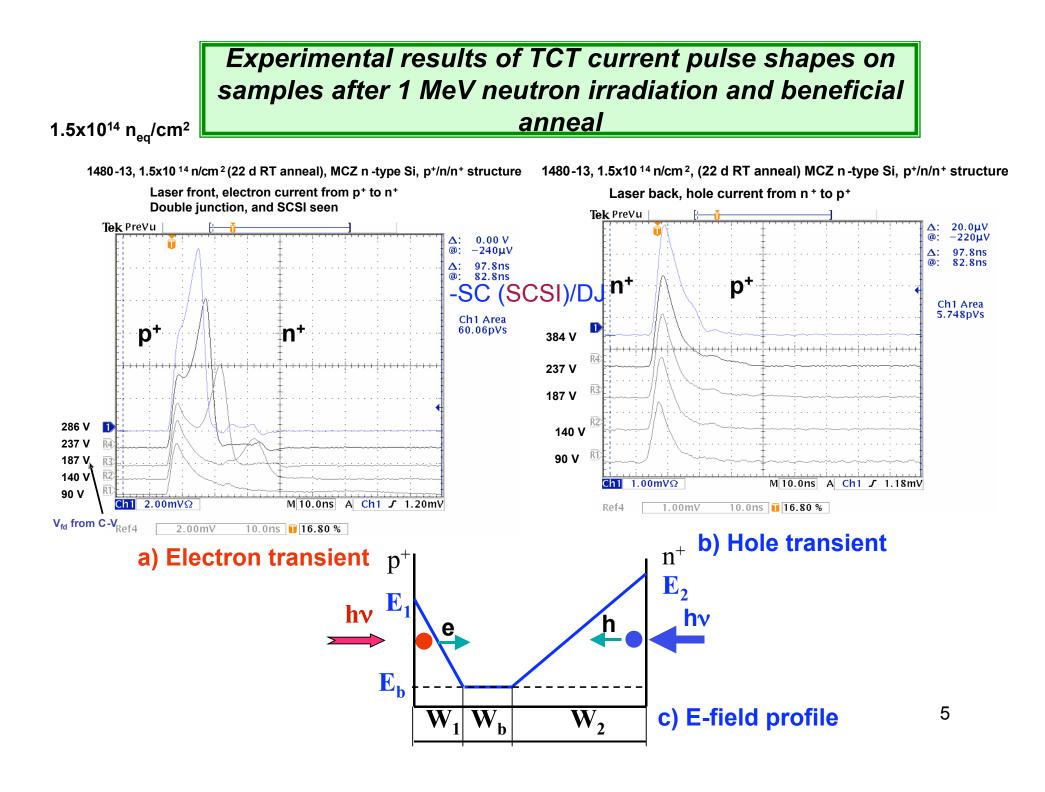
1. Z.Li, et al., IEEE Trans. Nucl. Sci.NS-51 (4) (2004) 1901.

Experimental: samples, radiations and measurements

V Samples:

n-type MCZ Si, 390 $\mu m,$ 0.25cm², 1000 $\Omega\text{-cm},$ as-processed p+-n-n+ structure (processed at BNL)

Sample #:	1480-5	1480-13	1480-15	1480-16
Conditions:				
1 st Radiation: Neutron				
(n _{eq} /cm ²)	1.5×10^{14}	1.5×10^{14}	3x10 ¹⁴	3x10 ¹⁴
2 nd Radiation: Gamma (Mrad)	500	0	0	500

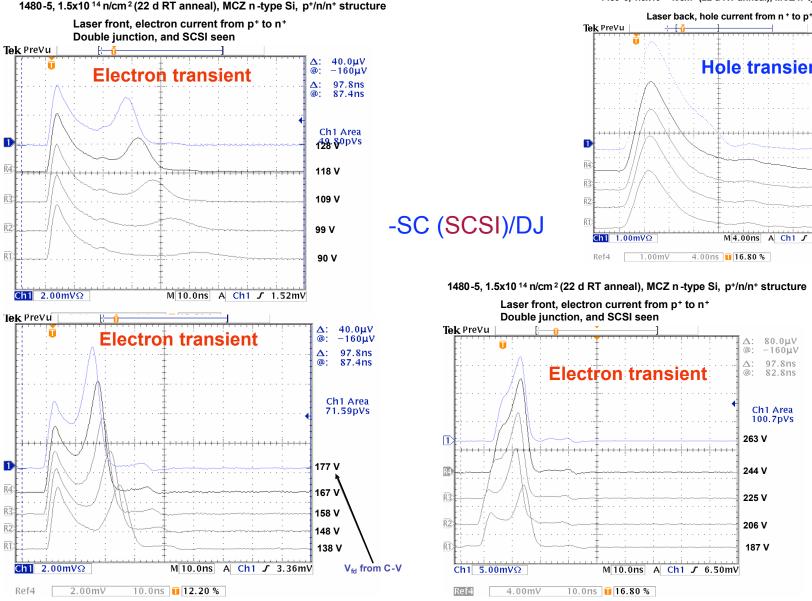

All samples were RT annealed after n-irradiation during the 5.5 month gamma radiation period

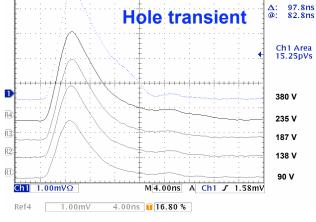
Radiations:

Neutrons: 0.8-1 MeV (HF=1.3), 1.5-3x10¹⁴ n_{eq}/cm², Annular Core Research Reactor in Sandia National Lab Gamma: 1.25 MeV ⁶⁰Co, BNL, up to 500 Mrads

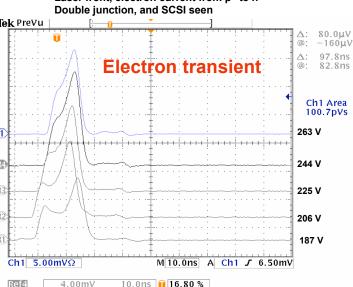
✓ Experimental technique: IV, CV, and TCT [2] with red (660 nm) laser (measured at BNL)

2. V. Eremin, N. Strokan, E. Verbitskaya and Z. Li, NIM A 372 (1996) 388-298




Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and beneficial

1.5x10¹⁴ n_{eq}/cm²


anneal

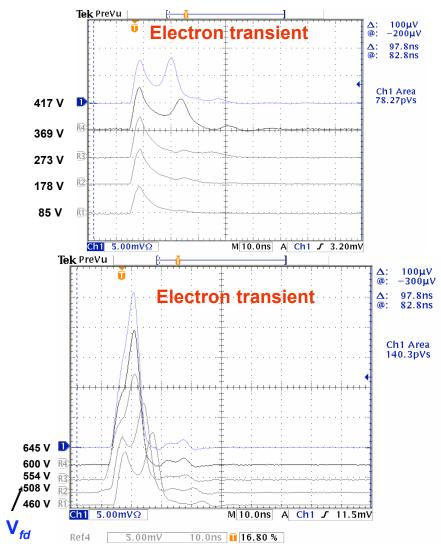
1480-5, 1.5x10¹⁴ n/cm² (22 d RT anneal), MCZ n -type Si, p⁺/n/n⁺ structure

6

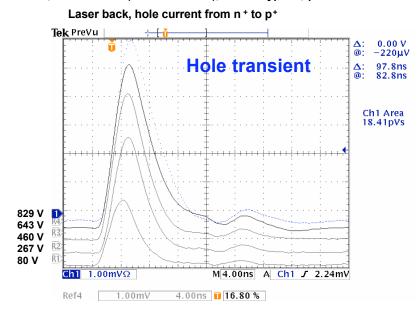
20.0µV

-220µV

Δ


@:

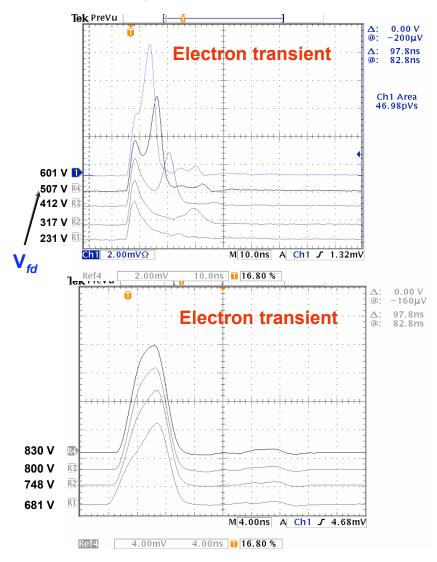
$3x10^{14} n_{eq}^{2}/cm^{2}$


Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and beneficial anneal

1480-16, 3x10¹⁴ n/cm² (22d RT anneal), MCZ n-type Si, p⁺/n/n⁺ structure

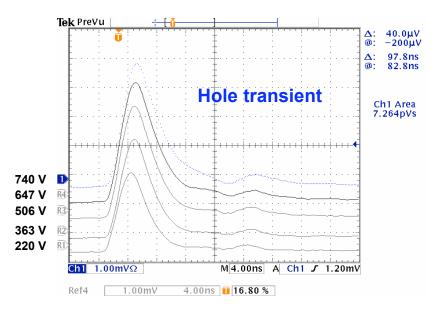
Laser front, electron current from p⁺ to n⁺ Double junction, and SCSI seen

1480-16, 3x10¹⁴ n/cm² (22 d RT anneal), MCZ n-type Si, p⁺/n/n⁺ structure

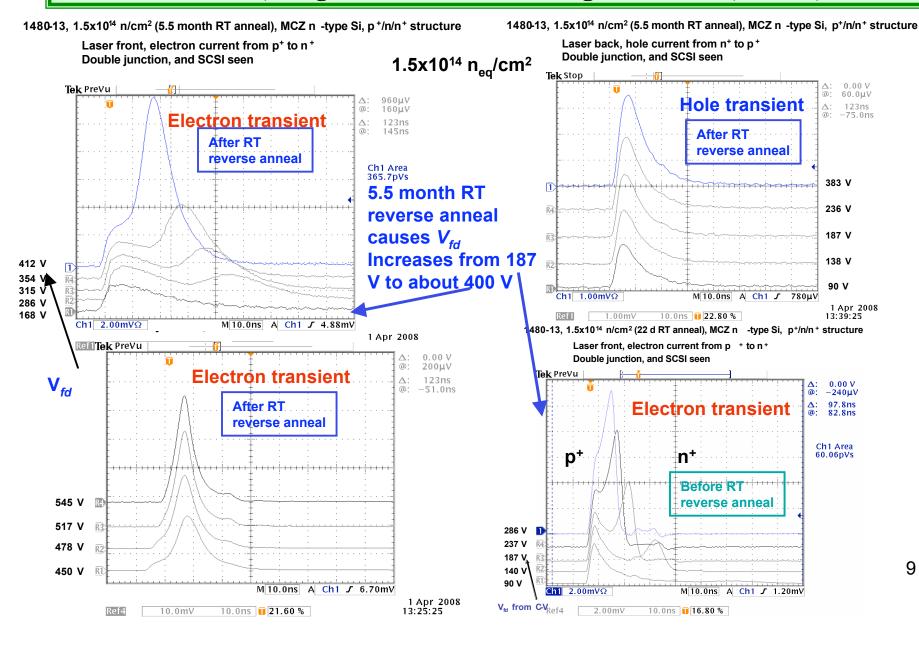


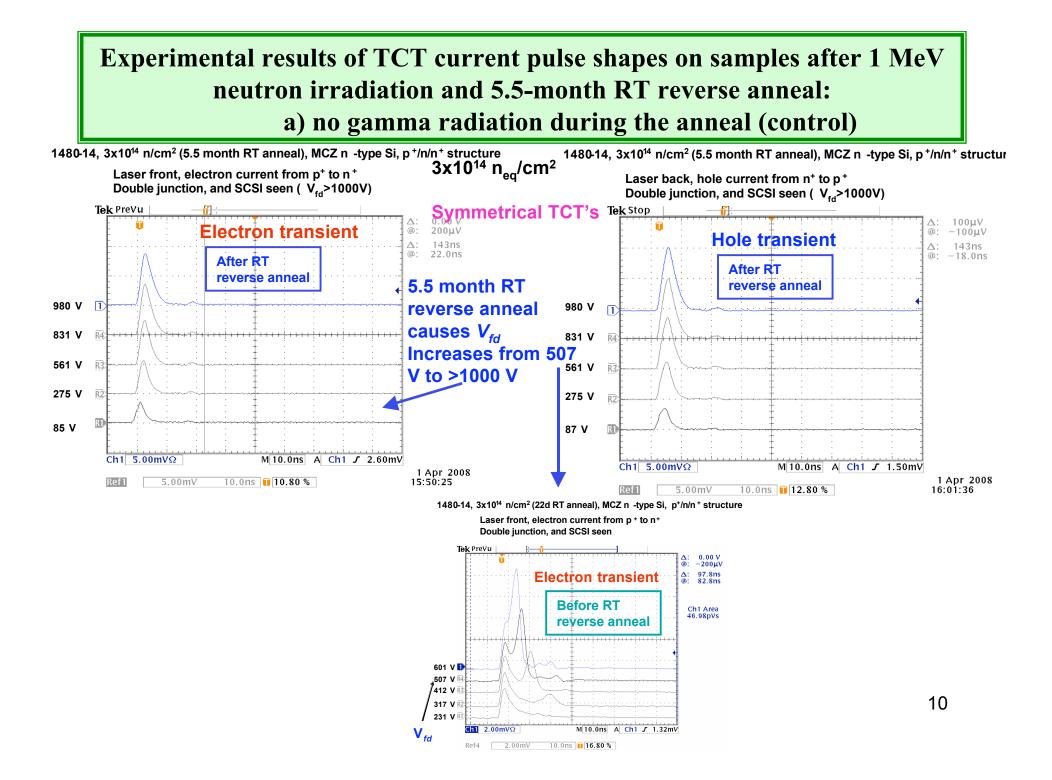
Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and beneficial anneal

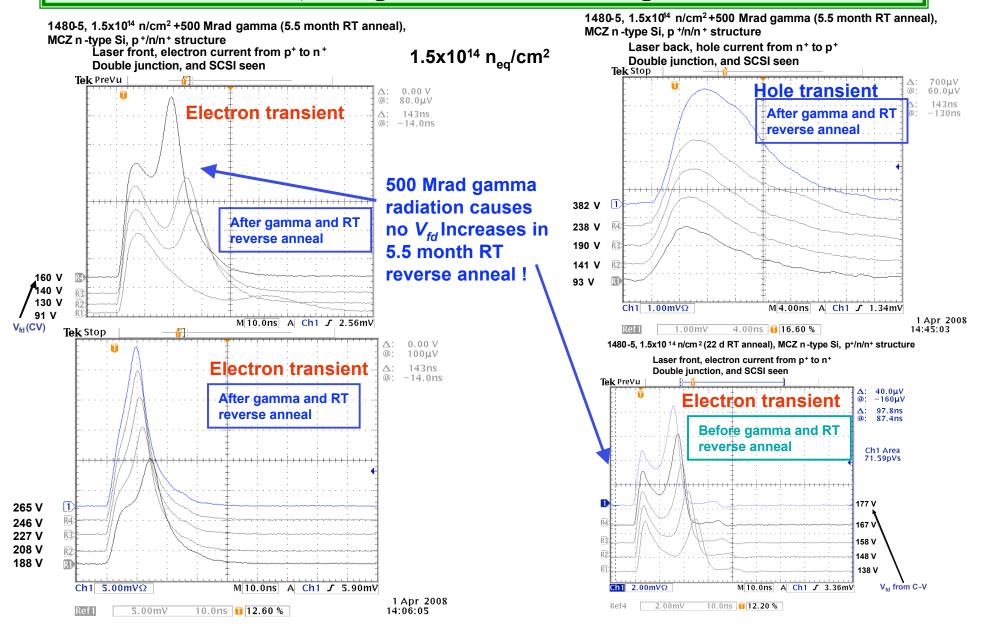
3x10¹⁴ n_{eq}/cm²


1480-14, 3x10¹⁴ n/cm² (22d RT anneal), MCZ n-type Si, p⁺/n/n⁺ structure

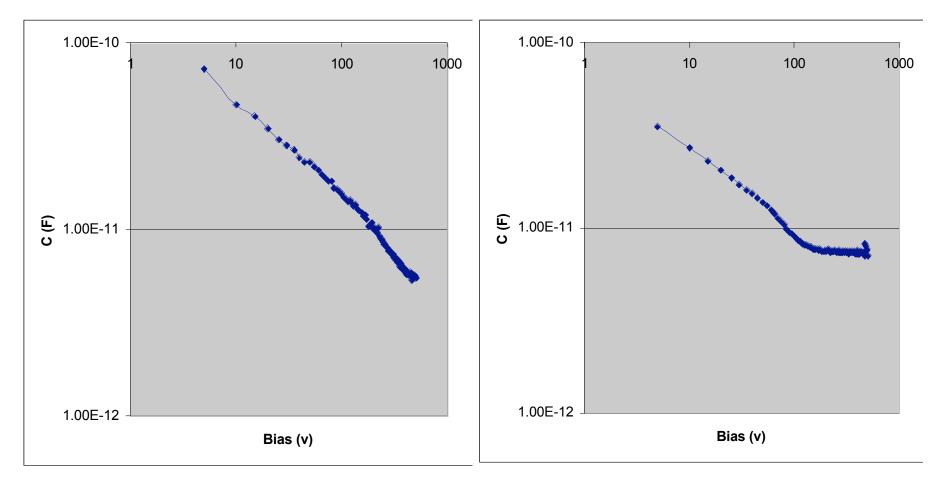
Laser front, electron current from p⁺ to n⁺ Double junction, and SCSI seen


1480-14, 3x10¹⁴ n/cm² (22 d RT anneal), MCZ n -type Si, p⁺/n/n⁺ structure

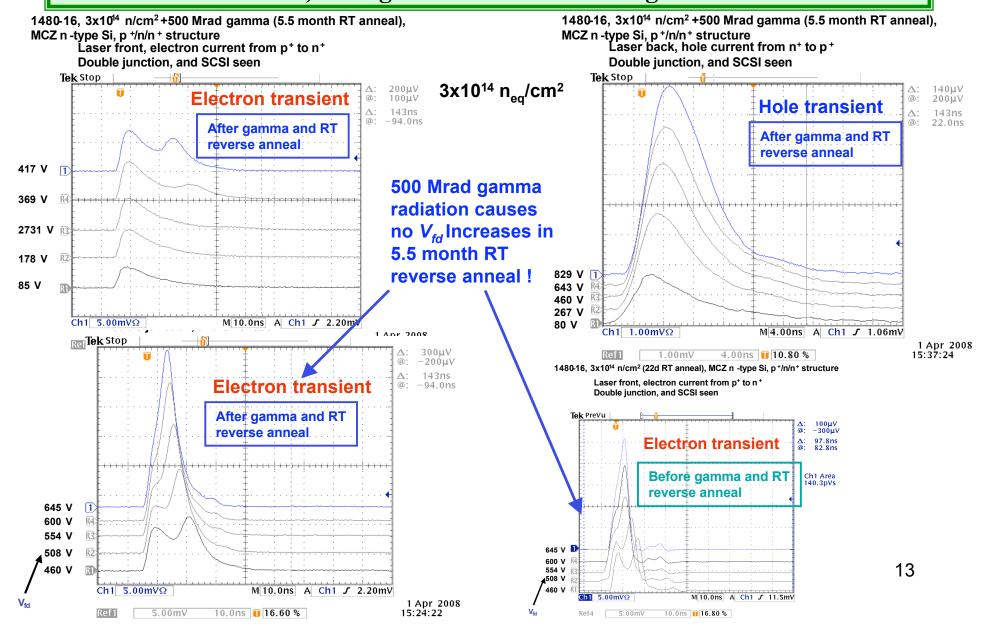

Laser back, hole current from n + to p+


8

Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and 5.5-month RT reverse anneal: a) no gamma radiation during the anneal (control)



Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and 5.5-month RT reverse anneal: b) with gamma radiation during the anneal



1480-13, 1.5x10¹⁴ n/cm² (5.5 month RT anneal), MCZ n-type Si, p⁺/n/n⁺ structure 1480-5, 1.5x10¹⁴ n/cm² +500 Mrad gamma (5.5 month RT anneal), MCZ n-type Si, p⁺/n/n⁺ structure

CV data confirms that 500 Mrad gamma radiation suppresses/compensates the RT reverse annealing

Experimental results of TCT current pulse shapes on samples after 1 MeV neutron irradiation and 5.5-month RT reverse anneal: b) with gamma radiation during the anneal

Discussion

Table I Voltage at the equal double peak (V_{DP}), full depletion voltage (V_{fd}), and N_{eff} for n -type MCZ Si detectors after neutron and gamma irradiations and RT anneal. Before any irradiation, $V_{fd0} = 350$ V, $N_{eff0} = 2.88 \times 10^{12}$ /cm³. Negative sign in N_{eff} means negative space charge (-SC).

Sample #	Neutron Fluence (n _{eq} /cm ²)	Gamma Dose After n irrad., During 5.5 months RT anneal (Mrad)		As Irradiated 6.6 hours RT Anneal		22 D	Days RT An		5.5 m	onths RT A	
			V _{DP} (V)	V _{fd} (V)	N _{eff} (cm⁻³)	V _{DP} (V)	V _{fd} (V)	N _{eff} (cm ⁻³)	V _{DP} (V)	V _{fd} (V)	N _{eff} (cm⁻³)
1480-5	1.5x10 ¹⁴	500	227	276	-2.3x10 ¹²	138	177	-1.5x10 ¹²	130	170	-1.4x10 ¹²
1480-13	1.5x10 ¹⁴	0	227	275	-2.3x10 ¹²	150	187	-1.5x10 ¹²	354	400	-3.3x10 ¹²
1480-15	3x10 ¹⁴	0	-	-	-	412	507	-4.2x10 ¹²	>1000	>1100	-8.9x10 ¹²
1480-16	3x10 ¹⁴	500	612	782	-	417	508	-4.2x10 ¹²	440	508	-4.2x10 ¹²

Red : Reverse anneal

GREEN: Reverse anneal suppression/compensation

The reverse annealing in samples irradiated by gamma at 500 Mrad is completely suppressed, regardless of the neutron fluence!

Discussion

Table II Changes	in N_{eff} during the 5.5 mor	oth RT anneal
I able II Changes	mine ff uuring uie 5.5 mor	iui KI amicai.

Neutron Fluence (n _{eq} /cm ²)	Gamma dose after n- rad,, during the 5.5 month	Changes in N_{eff} during the 5.5 month anneal (Mrad) (cm ⁻³)	Reverse annealing suppression	+SC would have been generated with gamma rad. alone
1.5x10 ¹⁴	anneal (Mrad) 500	$+0.1 \times 10^{12}$	Completely	$+1.5 \times 10^{12}$
3.0x10 ¹⁴	500	~ 0	Completely	$+1.5 \times 10^{12}$
1.5x10 ¹⁴	0	-1.8×10^{12}	No	-
3.0x10¹⁴	0	-4.7×10^{12}	No	-

o The positive space charge created by 500 Mrad gamma radiation would approximately compensate the negative space charge in the sample irradiated by $1.5 \times 10^{14} n_{eq}/cm^2$

o But it is too small to do same for the sample irradiated by $3.0 \times 10^{14} n_{eq}/cm^2$ o This points to some interaction between defects generated by gamma and that by reverse annealing in n-irradiated samples 15 • SCSI and double peak/double junction in n-irradiated MCZ Si detectors was confirmed

• Subsequent gamma irradiation up to 500 Mrad in a 5.5 month period caused complete suppression of the reverse annealing, which happened in control samples (no gamma radiation)

0 This suppression is independent of the neutron fluence (from 1.5- $3.0 \times 10^{14} n_{eq}/cm^2$)

• This points to some interaction between defects generated by gamma and that by reverse annealing in n-irradiated samples

o More systematic studies have been planned to confirm the effect