Summary: 3rd Workshop on Advanced Silicon Radiation Detectors (3D and P-type Technologies)

M. Lozano ${ }^{1}$, G. Pellegrini ${ }^{1}$, G. Casse ${ }^{2}$

1- CNM-IMB (CSIC) Barcelona, Spain
2- University of Liverpool, UK

Some numbers

ㅁ 14-16 April 2008 at Barcelona

- 51 attendants from 11 countries
- 25 presentations
- 1 live exhibition
- 1 dinner by the beach

P-type detectors

- Summary and results by Liverpool and SCIPP (G. Casse, A. Affolder, H. Sadrozinsky)
- Advantages:
- N-side read-out can be implemented on n-type substrates (with numerous successful examples). But requires double sided processing (backplane guard rings patterning). Will be effective after space charge sign inversion to p-type.
- P-type substrate more natural choice: no type inversion, no backplane processing.
- Easier to handle (not to take care of special gluing on the backside due to the presence of guard-rings, possibility of operating under-depleting also before irradiation)
- Up to 60% discount with respect to n-in-n!!

ㅁ
 Recent production of Silicon Strip, Pixel and Pad detectors (non exclusive list):

CIS Erfurt, Germany

- 2005/2006/2007 (RD50): Several runs with various epi 4" wafers only pad detectors
\square CNM Barcelona, Spain
- 2006 (RD50): 22 wafers (4"), (20 pad, 26 strip, 12 pixel),(p- and n-type),(MCZ, EPI, FZ) ■ 2006 (RD50/RADMON): several wafers (4"), (100 pad), (p-and n-type),(MCZ, EPI, FZ)
HIP, Helsinki, Finland
■ 2006 (RD50/RADMON): several wafers (4"), only pad devices, (n-type),(MCZ, EPI, FZ)
- 2006 (RD50) : pad devices, p-type MCz-Si wafers, 5 p-spray doses, Thermal Donor compensation
- 2006 (RD50) : full size strip detectors with 768 channels, n-type MCz-Si wafers
- IRST, Trento, Italy

■ 2004 (RD50/SMART): 20 wafers 4" (n-type), (MCZ, FZ, EPI), mini-strip, pad 200-500 $\mu \mathrm{m}$

- 2004 (RD50/SMART): 23 wafers 4" (p-type), (MCZ, FZ), two p-spray doses 3E12 amd $5 \mathrm{E} 12 \mathrm{~cm}^{-2}$
- 2005 (RD50/SMART): 4" p-type EPI
- 2006 (RD50/SMART): new SMART mask designed
- Micron Semiconductor L.t.d (UK)
- 2006 (RD50): $4^{\prime \prime}$, microstrip detectors on 140 and $300 \mu \mathrm{~m}$ thick p-type FZ and DOFZ Si. - 2006/07 (RD50): 93 wafers, 6 inch wafers, (p - and n-type), (MCZ and FZ), (strip, pixel, pad)
- Sintef, Oslo, Norway
- 2005 (RD50/US CMS Pixel) n-type MCZ and FZ Si Wafers
- Hamamatsu, Japan
- In 2005 Hamamatsu started to work on p-type silicon in collaboration with ATLAS upgrade groups

Protons \& P-type: Compare FZ and MCz

- p-type FZ:
- Monotonic Increase in Full Depletion Voltage:
- Monotonic Introduction of Acceptors
- Material becomes more ptype
- Introduction rate not constant? Donor removal?
- p-type MCz
- Non-Monotonic Increase in depletion voltage:
- Introduction of Donors
- Material becomes initially more n-type:
- Type inversion?
- Large initial donor introduction rate

Charge Collection in Upgrade Strips

ATLAS bias voltage is constraint to $<500 \mathrm{~V}$ (cables!).

Thin Sensors

- CCE comparison made between $140 \mu \mathrm{~m} \& 300 \mu \mathrm{~m}$ thick n -in-p FZ sensors using 40 MHz analogue electronics (SCT128)
- Leakage current measurements corrected to $1 \times 1 \mathrm{~cm}^{2}$ surface area and $-25 \mathrm{C}^{\circ}$ operating temperature

Bias current unavailable as thin sensor was breaking down above 200 V

Summary of p-type

- P-type is a mature and well proven technology!
- 1 p-type module present in the LHCb-VELO detector and the replacement is anticipated to be all p-type!
- Exhibits the required radiation hardness, adequate for most of the LHC upgrade detectors middle region (not for pixels)
- Cheaper and easier to handle than n-in-n. Single sided processing allows more manufacturer to be interested in the production.
- Big number of samples processed. Extremely good post-irradiation noise and break-down behaviours. No evidence of insufficient interstrip resistance over a large range of irradiation doses (very low doses to be explored). Both p-spray and p-stop have adequate performances.
- No charge collection improvement seen with thin sensors (140 mm)
- At point of saturation of thin sensor's CCE, thick sensors have $10-20 \%$ more leakage current
- If limited to 500 V , thin sensor only have lower current up to $\sim 3 \times 1015$ neq cm-2
- MCZ behaviour not clear: donor introduction?
- This good performance could be also used by the pixel community

More on MZ

- SMART Collaboration (Donato Creanza) proved that "For both MCz-p and MCz-n diodes irradiation bring to the creation of a junction on the back of the device."

$$
8.80 \cdot 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}
$$

- With fluence $8.80 \cdot 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$ the junction on the back is always almost equivalent in height with the one on the front.

Hamamatsu 150 mm production

- Industrial production of p-type strips in 150 mm wafers started
- Y. Unno presented the results from HPK
- 2006 p-type 6-inch (150 mm) wafer (ATLAS06)
- FZ-1(100)(~6.7k $\Omega \mathrm{cm})$, FZ2(100)(~6.2k $\Omega \mathrm{cm}$)
- MCZ(100)(~2.3k $\Omega \mathrm{cm})$
- 2007 p-type 6 -inch (150 mm) wafer (ATLAS07)
- FZ-1(100)(~6.7k $\Omega \mathrm{cm})$, FZ2(100)(~6.2k $\Omega \mathrm{cm}$)
- Many different insulation schemes
- Wafers from '06 already irradiated and results presented
- Preseries from '07 distributed

Measurement setups and simulations

- Several setups for measurement were presented
- Using SCT128 (I. Mandic)
- A beam telescope (P. Luuka)
- Combined simulation using Dios/Gridgen/Tesca
- MPI Munich groups (M. Beimforde)
- Applied to thin detectors

Further irradiation results

- Ljubljana group (G. Kranberger, V. Cindro) presented sistematic results from irradiation with protons, neutrons, and pions
- In mixed irradiations the damage seems to be additive (at least in FZ)
- "effective acceptor removal" is very strong for MCz-p
- Interms of trapping, hadrons are more damaging that neutrons
- Trapping in p-type silicon similar to trapping in n-type

ALIBAVA System

- Alibava (A Liverpool, Barcelona, Valencia) System is ready and was presented.
- A live demonstration was organized during the Workshop
- Now ready for distribution

3D detectors

ㅁ Activity in 3D detectors is pushing up with new results from different groups

- S. Parker presented an interesting extended summary on the history and present situation of 3D detectors
- C. da Via presented a detailed talk on the potential advantages of 3D detectors for the pixel detector of ATLAS upgrade:
- Spatial resolution
- Timing
- Terminology:
- SSST: Single side, single type
- SSDT: Single side, double type
- DSDT: Double side, double type

Fabrication activities

- Presentations of the fabrication activities and measurement at different laboratories were presented
- RD50 two institutes involved
- CNM - no Wafer Bonding, full hole process
- FBK - no Wafer Bonding, hole etch to come
- Stanford
- Research lab with full capabilities
- Sintef
- use Stanford poly filling
- IceMOS
- Wafer Bonding, hole etching, planarization (CMP), poly process
- Not a detector fabricator!

Stanford

- Stanford activity included in C. da Via talk.
- Now processing with Sintef
- They are also developing a fast readout electronics with a $0.13 \mu \mathrm{~m}$ CMOS technology
- Measured time resolution is: average 131 ps , maximum 286 ps, minimum 40 ps. (partial, very preliminary)
- Also activity in active edges

3D active edge

SINTEF

- A. Kok presented the activity at SINTEF, in collaboration with Stanford, Manchester and Hawaii
- First run: 25 wafers, 100mm, n-type substrate
- Limitations at SINTEF
- Polysilicon filling and boron doping performed at Stanford
- Big difficulties:
- Severe wafer deformation
- Large voids on some wafers
- Difficult to achieve a uniform resist coating on the surface
- Etching problems
- 2 completed wafer show diode characteristic
- New RIE system: Alcatel AMS 200

CNM

- G. Pellegrini presented new 3D devices.
- DSDT 3D technology developed at CNM
- ICP etching of the holes: Bosch process, ALCATEL 601-E
- Two types of poly filling.
- First complete run with pad, strips and pixels finished
- 3D Medipix pixel detectors bump bonded to Medipix MXR2.0 chips
- More results will be presented by G. Pellegrini and C. Parkes in this Workshop

55 um pitch

Glasgow measurements on CNM devices

- Pad and strip detectors from CNM were irradiated with neutrons at Ljubljana nuclear reactor
- Unirradiated pad detectors show lateral depletion at 2.4 V , full depletion at 8.5 V

- 3D strip detectors before irradiation:
- $100 \mathrm{pA} /$ strip (2 pA/hole)
- Signal/noise = 15
- Very low charge sharing compared to planar detectors
- 3D strips after irrad (5×10^{15} neq/cm²):
- Difficult to test due to high leakage currents, need to retest with cooling
- I > $20 \mu \mathrm{~A} /$ strip
- Not fully depleted at 40 V
- CCE tests still to do

IceMOS Technology Ltd, Belfast

- R. Bates presented the experience of Glasgow group with a commercial manufacturer.
- Leading supplier of:
- Thick film bonded SOI (Silicon On Insulator) wafers.
- Trench etch and refill technology
- Dielectrically isolated substrate preparation
- Characteristics:
- 150 mm
- STS Machine (Surface Technology Systems Plc)
- B-doping outsourced
- First run SSDT.
- Over etched p-holes
- Alignment problem
- Excess current
- Working devices showed good results
- Next run: DSDT

FBK-IRST, Trento

- M. Boscardini presentd current activities of FBK, and A. Zoboli results of irradiated SCST devices
- RIE AMS200 operative
- Detectors feature columns of both doping types, but the process (column depth) is not optimized
- Double side, no hole filling
- First batch of DCDT finished
- show early breakdown
- DCDT on p-type substrates (including ATLAS pixel layout)
should be completed by the end of july

FBK-IRST, Trento

- 3D_STC after irradiation are still working
- The annealing has affected the CCE:
- on CZ probably due to trapping of holes between columns
- on FZ mostly because the annealing was too long and Neff has increased significantly

Other technologies for pixels

- D. Münstermann presented the activities on pixel detectors for the ATLAS upgrade.
- Many technologies, including but not only 3D devices, under evaluation
- Bump bonding is the main cost
- Y. Unno presented a different alternative: SOI Monolithic Pixel Detector
- SOIPIX collaboration
- This is a specific "flavour" of MAPS
- Results with OKI (Japan) SOI-CMOS $0.15 \mu \mathrm{~m}$ technology
- H.-G. Moser presented an exahustive summary of 3D technologies for interconnection.
- Information from Ringberg Castle Conference
http:/ / indico.mppmu.mpg.de/ indico/ conferenceDisplay.py? confl d=184

Simulations of electric field

- S. Watts showed some calculations on weighting fields and the influence of Ramo's Theorem in detectors with high trapping (irradiated devices)
- Using general PDE solver (FlexPDE) with modified Poisson equations.
- Z. Li showed simulations of weighting fields in 1 columns (stripixel) and two columns designs

Conclusions on 3D detectors

- Activity in 3D detectors is growing
- Fabrication facilities other than Stanford have shown the capability to produce 3D detectors.
- Different alternatives to the original Parker and Kenney design and technology shown
- DSDT with electrodes going through the complete bulk is the best option
- SSST design seems not be good enough for sLHC
- New interesting results on DSDT 3D detectors fabricated at CNM were presented by Glasgow.
- Results from pad and strip
- Results from pixels in this conference

