C-V/IV and CCE measurements of MCz and FZ p and n type diodes after mixed irradiations

<u>G.Kramberger</u>, V. Cindro, I. Mandić, M. Mikuž, M. Zavrtanik Jožef Stefan Institute Ljubljana, Slovenia

RD50 MICRON 6" project

•36 processed wafers

•Fz (topsil) and MCz (okmetic) wafers of p&n type material

•n-on-n, n-on-p, p-on-n structures (pixels, strips, diodes)

Strips: ATLAS strips geometry 80 μ m pitch (w/p~1/3) **Pads:** 2.5 x 2.5 mm², multiple guard rings

Material selected for the study – diodes only !

	MCz-p	MCz-n	Fz-p	Fz-n
Wafers	2552-6,7	2553-11; 2552-10,14	2551-1,3,4,6,7	2535-11; 2535-8,9
Resitivity	1.5 Ω cm	2 k Ω cm	14 k Ω cm	~20 k Ω cm, ~3 k Ω cm
Orientation	<100>	<100>	<100>	<100>

SSDs and diodes irradiated with neutrons and protons and pions; a collaboration of Santa Cruz, Liverpool and Ljubljana!

6/5/2008

Motivation

The detectors at experiments will be exposed to both charged hadrons and neutrons!

- Are damages additive, both for I_{leak} and V_{fd} ?
- Are damages additive, both for leak the space charge of MCz-n detectors after fast charge hadron irradiations (for neutrons we know that they introduce negative space charge)?
 - Is there any difference between our standard "24 GeV protons" and "real" LHC pions
 - How much is CCE affected?

The following detectors were exposed to additional $2 \cdot 10^{14}$ cm⁻² neutrons:

•Fz n-p: 1.85, 4.81 p; 1.5 π [10¹⁴ cm⁻²]

•Fz p-n: 1.85,4.81 p; 1.5 π [10¹⁴ cm⁻²]

•MCz n-p: 1.85, 4.81,11 p; 1.5 p [10¹⁴ cm⁻²]

•MCz p-n: 1.85, 4.81,11 p; 1.5 p [10¹⁴ cm⁻²]

Proton irradiated detectors were annealed prior to neutron irradiations for 10 min@60°C.

Pion irradiations

•It seems that fluence is large enough that the initial dopant removal is completed

•FZ detectors seem to perform similarly

What do we expect from additional neutron irradiations:

Fz-p,n , MCz-p after pions: N_{eff} <0 additional

neutrons 2e14 cm⁻²

6/5/2008

 $N_{eff} < 0$ and increases in time

MCz-n after pions: N_{eff} >0 additional

neutrons 2e14 cm⁻²

 $N_{eff} < 0$ and decreases in time

Mixed irradiations – pions V_{fd}

• **1.5e14 π+2e14** r

Expectations are confirmed!

•The rise $\Delta V_{fd} \sim 550$ V of MCz-p, Fz-p,n is almost identical after additional neutrons confirming the N_{eff}<0. MCz-n rises much less after additional pions, what can be explained by SCSI

Short term annealing indicates Neff<0 for all; reduction of acceptors during annealing
large introduction rates of short term annealing can be of short irradiation and immediate storage at low T

•the difference V_{fd} (pions+neutrons)- V_{fd} (pions) after 80min@60°C corresponds roughly to expectations for (additive damage)

~180 V for MCz-p (expected: 120 V = 2 x 60 V) ~280 V for Fz (expected: 250 V=2 x 125 V)

•The difference is too large for MCz-n -> more complicated picture! Also less beneficial annealing! V_{II} at equivalent fluence of ~4e14 cm⁻² < 200 V!

Mixed irradiations – pions I_{leak}

$$\frac{\Delta I_{pions}}{\Delta I_{neutrons}} \approx \frac{17\,\mu A}{19\,\mu A} = 0.9 \approx \frac{\Phi_{eq,pions}}{\Phi_{eq,neutrons}}$$

•Annealing is the same as for single particle irradiation.

Mixed irradiations – pions CCE

Charge collection after 80 min @ 60°C for different detectors!

G. Kramberger et. al, C-V/IV and CCE measurements of MCz and FZ p and n type diodes after mixed irradiations, 12th RD 50 Workshop, Ljubljana, June 2008

6/5/2008

Proton irradiations

We should expect the same as for pions! Remember 24 GeV protons are our "replacement" for pions!

Fz-p,n , MCz-p after protons: N_{eff} <0 additional neutrons

2e14 cm⁻²

 $N_{eff} \le 0$

6/5/2008

MCz-n

after protons: $N_{eff} > 0$

additional neutrons 2e14 cm⁻²

 $N_{eff} > 0$???

Space charge determination based on short term annealing

•Low fluence: Neff<0 for all

•High fluence:

•Neff<0 for MCz-p, Fz

•Neff>0 for MCz-n

The V_{fd} decreases after n irradiation for MCz-n!

The initial jump of V_{fd} tends to be smaller at higher fluence for MCz-p and Fz Long term annealing:

•seem to be faster for Fz than MCz

•follows expectations (decrease of V_{fd} in time for MCz-n,

increase for Fz and MCz-p)

It is clear that:

•MCz-n -> "positive space charge"

 $(N_{eff}$ before neutron irradiation is large enough not to be overcompensated). The V_{fd} is reduced by ~200 V after additional neutron irradiation.

•MCz-p -> "negative space charge", but increase of V_{fd} after additional neutrons is just 80V !

After almost Φ_{eq} =1e15 cm⁻² the V_{fd} of MCz detectors is around 500V. Even if initial resistivity of MCz-p is low the "acceptor removal" will help to get the V_{fd} down. For MCz-p the V_{fd} is lower than the initial V_{fd} of 460 V!

Is the damage additive at different fluences?

dashed line – predicted difference $\Delta V_{fd} = V_{fd}$ (protons+2e14n cm⁻²)- V_{fd} (protons) = 250 V (Fz) , 120 V (MCz) (for neutrons V_{fd} increases: ~60V/1e14 cm⁻² (MCz) and ~125V/1e14 cm⁻² (FZ))

6/5/2008

The agreement is fair, except for disagreement at lowest fluence for FZ! The damage is additive in the first approximation, but further studies are needed!

Do CCE measurements confirm the C-V? Is trapping additive?

MCz-n

MCz-p

The V_{fd} from CCE agrees very well with (and so confirms) the V_{fd} from CV! Collected charge for p+n irradiated samples is systematically lower than for p only: expected reduction after neutron irradiation for $V > V_{fd} + 200V$: ~ 2 x 700 e ~1400 e agrees approximately with measured one! It is an indication that also trapping is additive (except MCz-n ?? Should be re-measured)!

Fz-n

Conclusions

- The damage of different particles:
 - Is additive for leakage current

6/5/2008

- Seem to be additive also for $N_{eff}(V_{fd})$
- discrepancy at low proton fluence for FZ at low pion fluence for MCz-n
- Seem to be additive also for trapping
- "Space charge "after pion/proton irradiation in MCz-n detector is positive-> additional neutron irradiation reduces the V_{fd}!
- V_{fd} from CV and QV agree well for mixed irradiated diodes

G. Kramberger et. al, C-V/IV and CCE measurements of MCz and FZ p and n type diodes after mixed irradiations, 12th RD 50 Workshop, Ljubljana, June 2008

6/5/2008