

Status of 3D R&D in Freiburg

Ulrich Parzefall for Waltraud Buchenberg, Karl Jakobs, Susanne Kühn, Gregor Pahn, Andreas Waltz, Sebastian Walz, Andrea Zoboli*

Freiburg University (*also at fbk-IRST)

Lars Eklund, Celeste Fleta, David Pennicard Glasgow

12th RD50 Collaboration Meeting, Ljubljana

Introduction

- Module overview
- Lab test results
- Test beam set-up & analysis
- Conclusions

The Modules

- Available modules
 - Sensors are 3D-microstrip devices made by fbk-IRST
 - Fanins custom-made in house
 - Electronics: most modules use ATLAS SCT readout from EC module production
 - One module uses LHCb-Velo readout with Beetle-ASICs. This was in the test beam.

3D-STC Module

- Module with two 3D-STC sensors
- Irradiated to 0.98·10¹⁵N_{eq}/cm²
 - 80um strip and inter-column pitch, 230 columns per strip, 64 strips, ~2cm strip length matched to short strip layer in SLHC trackers
 - 2 sensors: FZ (CZ) p-type substrate, pspray isolation, 525 µm (300µm) thick

5

- Sr90 beta source measurements on irradiated 3D-STC after annealing
- V_{FD} ~ 230V as predicted for CZ p-type
- Charge collection is reduced by irradiation, and also slightly by annealing
- Post-annealing effect could be explained by
 - Increased hole trapping
 - Hole trapping is important between columns
 - Simulations by Andrea Zoboli

Expected $V_{LAT} = 33V$ Expected $V_{FD} = 230V$

- Total depletion unreachable due to onset of micro discharge
- Note high annealing T will move into reverse annealing regime
- Due to reverse annealing N_{eff} increases

 > less charge after annealing due to smaller depleted volume underneath the columns.

3D Test beam

Freiburg module

Ulrich Parzefall, Universität Freiburg

RD50 Workshop, Ljubljana, Slovenia, June 2008

Testbeam Module

K1100 carbon fiber for cooling Sensors - 3D-STC n⁺-on-p mCz microstrip devices from fbk-IRST, Trento - Thickness: 300µm / 380µm - Strips: 64 per sensor, length 18.4mm, pitch 80µm - Isolation: p-spray / moderated p-spray - Columns: pitch $100\mu m / 80\mu m$, depth 150µm Pitch adapter Readout Analogue 40MHz LHCb hybrid - Beetle ASICs (~25ns shaping) - 5 consecutive time bins Aluminium frame Al_2O_3 for cooling

Track information (Ole Rohne)

- Starting point: x, y track coordinates
- Beam shape: track y vs. track x (left plot)

 Track x,y for events where the 3D sensor registered a hit

Desynchronisation

- So far the data look promising
- But data analysis proved very problematic
- Caused by two paralell DAQ systems that frequently loose synchronisation
- Event offset between DAQs must be found from data (using correlation between telescope and 3D sensor)
- Typical length of clean run sequence ~500 events
- In addition to that, main DAQ has internal trigger losses

Re-Synchronisation

- Re-Synchronisation fix improves data sample massively
- Fix cannot recover all events → uncorrelated hits make alignment difficult and need to be excluded
- Fit correlation line by slicing 2D histogram and retrieving the y maximum for each strip from Gauss fit
- Use only hits within 3σ
 ≈ 200μm for alignment
 (≈ 91%)

пттія

his ces

49217

- Calculate residual (extrapolated track position -220 = 200 = measured hit position)
- Minimize it
- Alignment converges
- Residual: ~26µm • (c.f. binary: 23µm from 80µm/√12)
- So far only small sub-set of data analysed. Requires effort from central DAQ (Ole Rohne)
- Strategy: fold all data onto one unit cell to look for local variation of CCE as expected from simulation & Laser Tests
- Results expected in autumn after Gregor Pahn finishes his thesis

Signal in mV

residual = meas, position - cale, position

Ongoing work: Double Type Column

- The new geometry is an important step as for CCE and radiation hardness
- In Freiburg: 4 DDTC p-in-n strip sensors from first batch (again from fbk-IRST)
- 300µm thick, 190 µm column depth
 - Column overlap only 80µm
- Size 1cm × 1cm, 80µm inter/intra column pitch
- 102 strips and 102 col/strip
- Devices show early breakdown, but can be fully depleted
- 2 DDTC modules were made with ATLAS SCT readout, source and laser testing still ongoing

Need to move from STC to DTC!

Comments on 3D-STCs

- Overall charge level low (2.2fC) due to ballistic deficit arising from 3D-STC field configuration Signal [ADC counts]
- This will be improved with new ٠ Double Type Column Designs
- 3D-STC after irradiation to 10¹⁵N_{ea}/cm² are still operational
- Same CCE as unirradiated device, • but at much higher bias voltage
- The annealing has affected the CCF:
 - On CZ probably due to trapping of holes between columns
 - On FZ mostly because the annealing was too long and Neff has increased significantly
- Modules recently taken to another irradiation step, total dose now ~3.5 · 10¹⁵N_{ea}/cm²
- Testing in Sr90-system is running this week

- Work on STC 3D devices (originally intended as technology test) is coming to an end.
 - STCs are radiation hard
 - Too slow for a 40 MHz SLHC (field configuration)
 - Still have some STC measurements in the pipeline
 - Two modules irradiated to $3.5\cdot10^{15}\rm N_{eq}/\rm cm^2$ in source and laser test systems
 - Completion of 2007 test beam analysis
- Future 3D tests will concentrate on DDTC devices
- Last testbeam analysis has many complications, given by separate DAQs
- We plan to participate in CMS testbeam this summer, in the spirit of RD50

RD50 Workshop, Ljubljana, Slovenia, June 2008

Setup schematic (simplified)

- 3D devices under test on Freiburg module (Fre)
- Telescope/TDC and sensor separately read out
- Triggered by scintillators
- Active sensor area very small
 →use 3rd scintillator as veto

Finding start values

- choose sensor system origin in lower right corner →start values for 3 offset parameters
- Sensor should only be shifted in x and y
- Why is there also a rotation?
 - x and dy correlated

- Sychronisation fix cannot recover all events \rightarrow uncorrelated hits make minimization unreliable and need to be excluded
- Fit correlation line in ref 0 by slicing the 2D histogram and retrieving the y maximum for each strip from Gauss fit
- Use only hits within $3\sigma \approx 200 \mu m$ for alignment ($\approx 91\%$)

