Development of an Indium Bump Bonding Process at PSI

C.Brönnimann, F.Glaus, J.Gobrecht, B.Henrich, M.Horisberger, R.Horisberger, H.-C.Kästli, J.Lehmann, T.Rohe, S.Streuli

PSI

Most material presented is taken from

slides of the conference talks at http://www.psi.ch/~rohe
Introduction

• Membership of the PSI group in the CMS pixel project (since 94) required access to bump bonding technology

• Decision to develop in house bump bonding process instead of an industrial contract was taken 1997
 - Fine pitch bumping was not easily available at this time (industrial partners would need R&D)
 - Wanted to have full control on process (parts/most of it can in principle be outsourced)
 - Fast feedback in case of problems (was very important for the success of the project)
 - Fast and flexible availability during prototyping
 - Lot of infrastructure is available at PSI (especially the Lab for micro and nano technology), only moderate investments necessary
History

• 1997/98 first trials
 - Sputtering of UBM
 - Construction of In evaporation chamber (optimised version in operation since 2002)
 - Construction of manual chip placer
• Increasing wafer radii 100mm (Honeywell) to 200mm (2005, DSM)
• 2003 construction of the PILATUS 1M
• 2005 commissioning of a fully automated chip placer
• 2005/06 start of series production for PILATUS 6M and CMS pixel barrel
• 2008 finishing of the construction of the CMS pixel barrel
Process Flow

- **Sensor**
 - Test
 - UBM-Deposition (Lift-off)
 - In-Deposition (Lift-off)
 - Cutting Wafer
 - Test
 - Cleaning
 - Reflow
 - Chip flipping

- **ROC**
 - Test
 - UMB and Indium Deposition (same lift-off)
 - Wafer thinning (~180μm)
 - Sawing and picking
 - Cleaning
 - Test

- Reflow
- (Geom. verification + pull test, now omitted)
- Raw module test
- (Potentially: **Rework**
UMB: Photolithography

• Use of 2 layer resist
 - Lift-off resist (LOR), not light sensitive, 1.2-1.5μm
 • light scattered from rough metal surface does not harm
 • not removable with acetone
 - Positive resist (parts exposed are developed), ~3.5μm
 • Alignment not possible with bumps only
 - UBM now done by sensor vendor (CiS, Germany)
Clean Room Equipment

- Area: $\sim 350m^2$
- Class 1000 (personal area) to 100 (photolithography) up to 10 (some work spaces)
UBM: Sputtering and Lift-off

- UBM is sandwich of
 - Ti (adhesion, barrier)
 - Ni (wettable with In)
 - Au (sacrificial, oxidation protection)

- Total thickness ~100nm

- Wet lift-off at ~60°C

- Now done by sensor vendor (CiS)
Indium Deposition

- Photolithographic process like UBM, but thicker (3.5 + 4.5 μm, LOR > 1.2 metal thickness)

- **Indium evaporation** in apparatus designed and built at PSI
 - Vessel is water-cooled
 - Photoresist better removable
 - 1×200mm or 3×100mm wafer
 - Space for several boats (alloy's possible)

- Same lift-off process as for UBM
Indium Deposition (2)

In evaporation vessel

wafer after evaporation
- Short (~1min) heating to about 200°C

- Size of bumps
 - volume of evaporated Indium ~4000μm³
 - diameter of wetable UBM pad 18 μm
Metal Deposition on ROC

- On ROC only **thin metal layers** are deposited
 - UBM (same composition as on sensor)
 - Thin In-layer for better adhesion before reflow of joined samples

- **Only one** layer of photo-resist
 - easy, acetone used for lift-off

- Photolithography for **200mm** wafers possible in-house
Automatic Chip Placement

- Machine designed and built in 2002-4
- Main challenges
 - calibration of stages
 - software
- ROCs are automatically taken, aligned with 2nd camera, and placed on the
 1. probe card (test functionality)
 2. sensor (and pressed down)
- Automatic operation since 2005
 - 50min/module (including chip test)
 - 15min for preparation and loading
 - no human interference necessary
- Now commercially available
Reflow of Joined Module

• Mechanical strength
 - before reflow the modules are extremely fragile
 - transfer to furnace is critical

• Self alignment
 - misalignment of a few micrometers is corrected by surface tension

• Controlled and reproducible environment (time, pressure, temperature, ...) provided by electronically controlled set-up (designed and built at PSI).
Test of Raw Modules

- Probe card contacts 1 ROC
 - Test functionality of each ROC
 - Bump yield
 - Sensor IV (when 1 ROC is grounded)
- Bad ROCs are replaced (rework)
- If sensor is bad, module is rejected
- Overall raw module yield ~90% (after rework)

Picture provided by Stefan Koenig, PSI
Bump Yield

Overlay of modules tested at $T = -10^\circ$ C (ATC)

Final Grade A
(523 modules)

Final Grade B
(143 modules)

Final Grade C
(42 modules)

\[\text{44.3 Mio. Pixel} \]

\[\text{2.8 Mio. Pixel} \]

From database of the ETH group (U. Langenegger et al.)
Rework

- Sometimes defective ROCs have to be replaced after test of bare module
- Little number of modules affected (low statistics)
- Introduction of dry mechanical cleaning step strongly reduced number of failures
- Working principle
 - module and ROC are heated
 - ROC is lifted with heated vacuum chuck
 - new ROC is placed
- Success rate seems high
- Bump yield of reworked ROC is lower (low statistics)
Practical Aspects

• Photolithography (Sensor)
 - Surfaces of ROCs, sensors ... quite different
 - Adhesion problems with sensors having a rough metallization (*stray light*)
 - Cured by introducing LOR (not light sensitive)

• ROCs
 - Corrosion of pads. Happens on few ROC wafers, especially if lift-off was done with high ultrasonic power. Not yet fully understood.

• Dead Chips
 - One failure mode are silicon pieces, which was strongly reduced by a dry mechanical cleaning step
 - Rework possible but painful (try to avoid)

• Logistics: Three Departments of PSI are involved
 - Lab. for Particle Phys. (TEM): Logistics, chip and sensor testing, Indium evaporation
 - Lab. for Micro and Nanotechnology (SYN): Clean room. All photolithographic steps
 - Lab for Development and Methods (NUM): Sputtering of UBM
Samples for Irradiation

- A small sensor (size of 1 ROC, 1 cm x 1 cm) contains all features of the full module
- Last heating step is the reflow of the flip chipped sample
 - Self alignment
 - Mechanical strength
- Strongly advise to irradiate flip chipped and reflowed samples
- In case of diced samples photo lithography of single dies (in principle) possible
 - Extremely labour intensive
 - Presently a problem with resources at PSI
“Cold” flip chipping

- In 2002 – 04 no (really) radiation hard readout chip was available (we used for sensor characterisation an old Honeywell chip)
 - Sensor was irradiated after bump reflow
 - Handling becomes critical
 - Flip chip procedure was adapted
 - Extremely labour intensive (several hours per sample)
 - Yield ~ 70%
 - Bump yield low but acceptable for test beam campaigns (> 90%)
Reflowed Indium Bumps
Support Frame

- During irradiation and transport bumps have to be protected
 - PCBs are large and heavy
 - Take much space in the shuttle
 - Activation of support frame is problematic
- Sensors are wire bonded to PCB
 - IV test is possible
- Sensor is clamped to the PCB and easily removable
Flip Chip Procedure

- No self alignment
 - Samples have to be extremely flat during bump bonding
 - Placement has to be done more precisely (difficult with the “old” manual chip placer
 - ROC was glued to small silicon piece

- Bump bonds are mechanically weak
 - Sensor was placed into glue
 - Bump head has to stay on the sample until glue is hardened
“Manual” Chip Placement

- Machine constructed and built in 1997
- ROC and sensor viewed at the same time through a prism
- Very flexible
- 3-4h per 16-chip module
- Operation “tedious” (practical limit: ~2-3 modules/week including inspections)
- Used so far for
 - ~50 multi-chip modules
 - many single chip sensors
 - ~1000 chips in total
- Was replaced by automatic machine for “large scale” production (~1000 modules)
Conclusions

- Bump bond process successfully developed

- Process features
 - UBM of Ti/Ni/Au on both sides
 - “Thick” Indium bumps on the sensor
 - “Thin” Indium layer on ROC
 - Reflow of In bumps and joined module

- Bump yield better than 99.9%

- Construction CMS pixel finished

- Bumping single dies is (in principle) possible

- “Cold” flip chip procedure for irradiated sensors was developed for a low number of samples
 - Make large efforts to avoid this in future !!!