FLUKA Simulations of Q6 Quench Test —Ultra Fast (Single Turn) Loss—

> N. Shetty, A. Lechner (on behalf of the FLUKA team)

W. Bartmann, C. Bracco, M. Pojer, M. Solfaroli Camillocci (Q6 Quench Test)

> M. Sapinski (BLM Team)

and with contributions from E. Todesco, K. Cornelis, T. Baer, E. Nebot Del Busto, C. Zamantzas

Quench-Test Analysis Working Group Meeting June 7, 2013

Outline

Introduction

Q6 Quench Test Quench Test Simulation FLUKA Geometry

Energy Deposition in Magnet Coils

Overview of ED in Q6 and Q7 Coils Transverse Profile of ED in Q6 (MQM) Coil

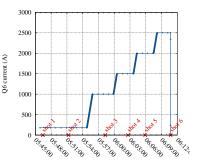
BLM Dose

Overview of Measured BLM Dose Rate Comparison of BLM Dose (Simulation vs. Measurement)

Q6 Quench Test

- Early morning of 15 February, 2013
- Quench margin of Q6.L8 at injection for different currents
- Q6 at 4.5 K (LSS) and horizontally focussing for beam 2
- TCLIB fully closed and intercepted fully the injected beam

Impact Parameter

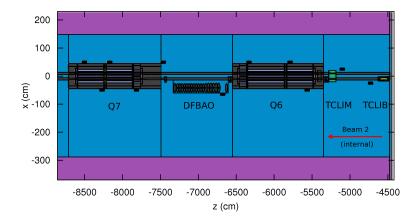

- TCLIB fully closed at 1.04 mm gap (upper jaw at -1.065) mm, lower jaw at -2.105 mm as measured by LVDTs)
- Beam at nominal orbit $=> 3\sigma$ (nominal) impact parameter on the upper jaw (7 σ real impact parameter)

Beam 2 Parameters' (at injection Energy: 450 GeV)								
	$\epsilon(\mu m \cdot \mu rad)$	γ_{r}	$\beta_x(m)$	$\beta_y(m)$	$\sigma_{x}(\mu m)$	$\sigma_y(\mu m)$		
Nominal	3.5	479.6	228.9	21.3	1292	394		
Real	0.5 ²	479.6	228.9	21.3	488	149		
¹ optics version 6.503, at the front face of TCLIB ² courtesy: Karel								

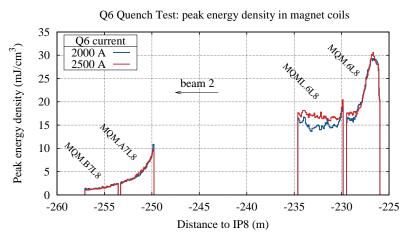
Deem 0 Devery taxe1 (at Injection Energy (450 Ca)/)

Attempts to Quench the Magnet

Shot	Time	Q6 Current (A)	Intensity	Quenched?
1	05:46	179	6.2×10 ¹⁰	No
2	05:51	179	6.2×10 ¹⁰	No
3	05:58	1000	6.2×10 ¹⁰	No
4	06:00	1500	6.6×10 ¹⁰	No
5	06:06	2000	6.5×10^{10}	No
6	06:08	2500	6.5×10 ¹⁰	Yes
-				

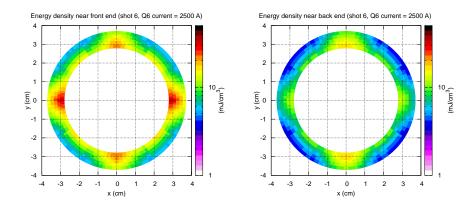


FLUKA Simulation


- Estimate energy deposition and provide input for quench limit calculation
- Attempt to reproduce the measured BLM dose
- Two different simulations:
 - 2000 A 4.91 TeV 74 T/m
 - 2500 A 6.13 TeV 93 T/m

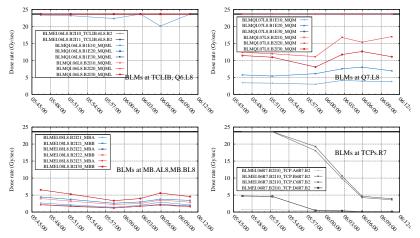
FLUKA Geometry

- Sensitive dependence on the geometrical details
- Detailed aperture: beam pipe, beam screen, vacuum modules, cold/warm transitions, BPM



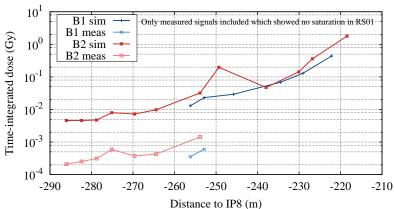
Overview of Energy Deposition in Q6 and Q7 Coils

- Max. energy density in Q6 (MQM)
- $\blacktriangleright\,\sim$ 30 mJ/cm^3 for both 2000 A and 2500 A


Transverse Profile of ED in Q6 (MQM) Coil

- Maximum ED in MQM > Inner coil > Horizontal plane
- ED shifts from horizontal to vertical plane due to focussing

Overview of Measured BLM Dose Rate


BLM dose rates (RS01) measured during the Q6 Quench Test (15/02/2013)

- Electronic limit: 23 Gy/s => Many BLMs saturated
- Protons that do not undergo inelastic collision in TCLIB probably reach the TCPs.R7

Comparison of BLM Dose (Simulation vs. Measurement)

 Discrepancy is observed between the measured and the simulated values

Q6 Quench Test (shot 5, Q6 current = 2000 A)

Possible reasons for discrepancy

- So far, FLUKA has reliably reproduced BLM dose for fast (ms) and steady state losses.
 - Losses are ultra fast (single turn) in the present case
- Simulation results are consistent with previous studies
- The cause of this observed discrepancy is still being investigated.
- Possible reasons could be:
 - Voltage drop due to the saturation of many neighbouring BLMs?
 - Space charge effects can be excluded (Zwaska, PhD thesis, 2005)
 - ▶ ..

Summary

- Q6 quench test simulated using FLUKA for two different currents (2000 A and 2500 A)
- Predicted peak energy density is ~ 30 mJ/cm³ for both the cases
- Quench limit to be determined (data passed on to Arjan)
- Attempted to reproduce BLM dose, discrepancy observed, and reasons are still being investigated