ZZjj distribution with Dim8 operators (draft)

Ashutosh KOTWAL, Shu LI

Duke University

May. 29^{th} , 2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ▼

Outline

1 Delphes3 fast Sim Comparison between SM and Dim8

Outline

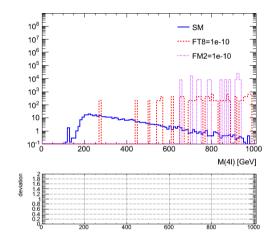
1 Delphes3 fast Sim Comparison between SM and Dim8

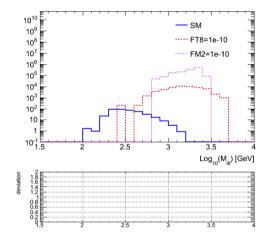
ZZjj Cross section results with dim8 operators

EWK zzjj total cross sections

Dim8 Operator	Cross Section (pb)
Standard Model	0.1326 ± 0.00035
$FT8 = 10^{-10}$	654.3 ± 5.3
$FT9 = 10^{-10}$	139.6 ± 0.36
$FM2 = 10^{-10}$	$4.151 \times 10^5 \pm 8.6 \times 10^2$
$FM3 = 10^{-10}$	3.58 ± 0.0051
$FT8 = 10^{-11}$	6.384 ± 0.046
$FT9 = 10^{-11}$	0.6933 ± 0.04946
$FM2 = 10^{-11}$	4149 ± 7.8
$FM3 = 10^{-11}$	0.1653 ± 0.00039

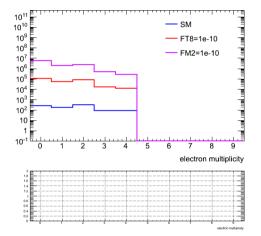
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

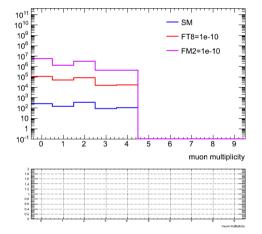

ZZjj Cross section results with dim8 operators: fully leptonic

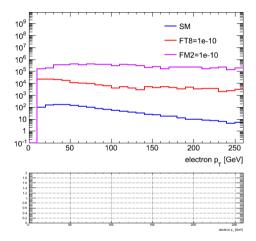

Cross Section (pb)
$0.0003079 \pm 3.825 \times 10^{-7}$
$0.0004673 \pm 7.366 \times 10^{-7}$
$0.0005731 \pm 7.594 \times 10^{-7}$
$0.09122 \pm 1.715 \times 10^{-4}$
$0.02025 \pm 2.581 \times 10^{-5}$
$3.565 \pm 1.266 \times 10^{-4}$
$0.0006426 \pm 7.18 \times 10^{-7}$
$0.0003091 \pm 3.9 \times 10^{-7}$
$0.0003107 \pm 4 \times 10^{-7}$
$0.00121 \pm 2.273 \times 10^{-6}$
$0.0005028 \pm 7.085 \times 10^{-7}$
pending
pending

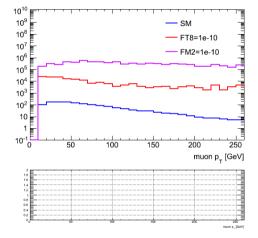
EWK zzjj cross sections in fully leptonic decay channels.

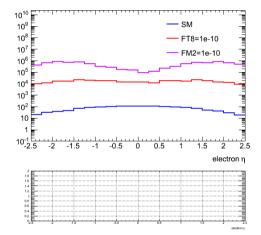
- Low statistics: only 1k events (1% efficiency due to divergence?)
- FM2 gives the best sensitivity. Only 2 derivatives in FMx while we have 4 derivatives in FTx. **Expected**?
- Comments from Ashutosh: we should give up FSx operators because they don't operate on gauge fields as indicated in the lagrangians

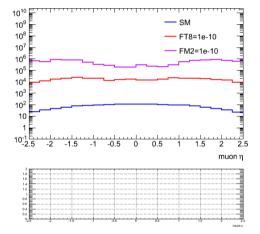

4-Lepton Mass

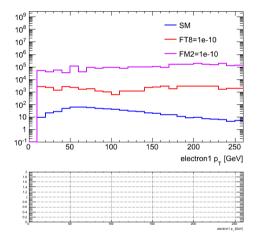


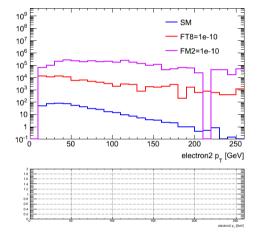

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ろくで

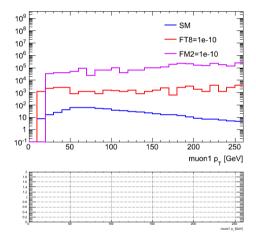

Lepton Multiplicity

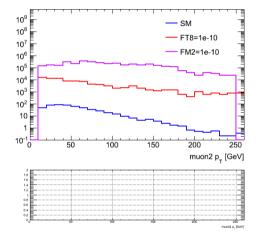

Lepton p_T spectra



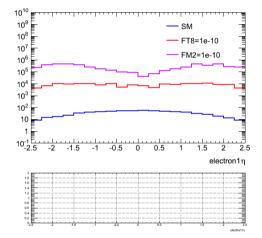

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

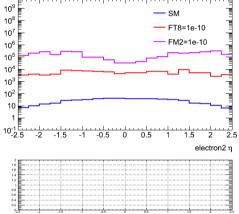

Lepton η spectra

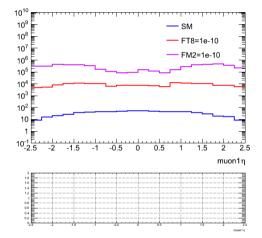

Electron p_T

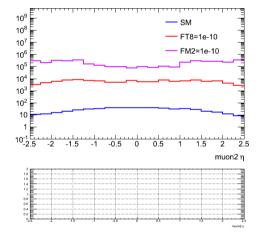


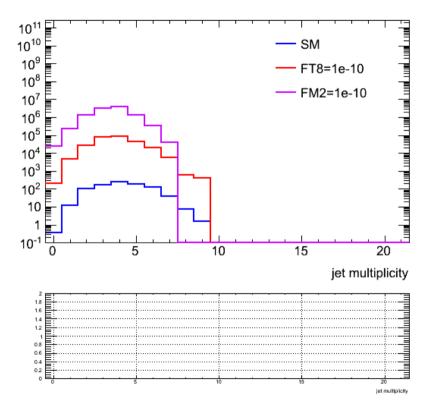
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇


Muon p_T

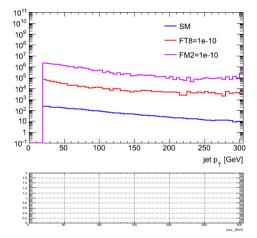


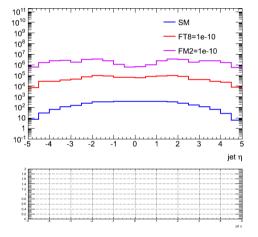

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇


Electron η

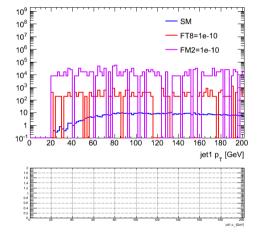


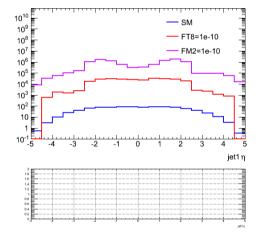
Muon η



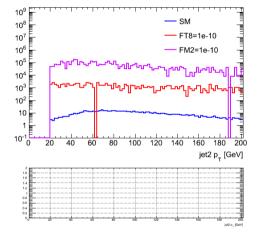

Jet Multiplicity

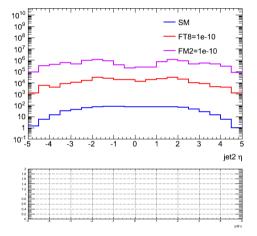
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろへ⊙


All Jet p_T and η

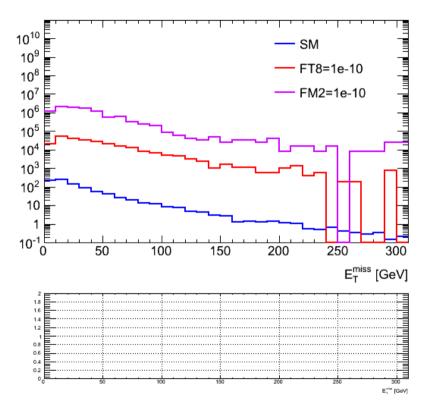


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 めんの


Leading Jet p_T and η



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 めんの


Subleading Jet p_T and η

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 めんの

Missing E_T

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろへ⊙

Quick summary

- Cross section results and kin. distributions of ZZjj are basically in place
- Suspicious divergence happen to this channel, very low eff. No fast turn around when trying to (re-)produce the signal samples (¿8h/kEvts)
- Limit setting is ready to work with ZZjj channel. Will try WZjj soon as it doesn't have the divergence
- More choices:
 - LS0,LS1: wwjj, wzjj, zzjj
 - LM0,LM1: wwjj, wzjj, zzjj, wajj, zajj, waa, wwa, zaa, zza, www, wwz,zzz
 - LM2,LM3: wwjj, wzjj, zzjj, wajj, zajj, waa, wwa, zaa, zza, wwz, zzz
 - LT8,LT9: zzjj, zajj, zaa, zza, zzz