More Operators for Tribosons: Significance

Jenny Holzbauer and Mandy Rominsky June 26, 2013

Note

- These slides contain a bug fix that affected the last (overflow) bin of previous talks
- The bug added both overflow bins into the second plotted distribution, which is usually the red aQGC. The extra events were a low contribution SM, typically, so this was not a particularly strong effect in most plots
- Have also used fewer bins/shorter range for these plots, plan to add log scale soon
- Please use plots from this talk forward
- Talk also contains updated version of significance calculator

Backgrounds Before

- WWW sensitive to backgrounds like SM WWW, WZ and ZZ
- Plots have nlepton >= 3, red is SM diboson, blue is FT0 for WWW
- No pileup but with snowmass Delphes

Backgrounds After

- Not allowing two leptons with same flavor + opposite charge
- Plots have nlepton >= 3, red is SM diboson, blue is FT0 for WWW
- About 75\% signal reduction, but ~all diboson bkgd removed

Significance

- Not allowing two leptons with same flavor + opposite charge removes ~all dibosons
- So can run significance estimate with only SM and aQCD (first pass)
- $10^{\wedge}-11$ way over 5 sigma, 10^-12 around $3-5$ sigma at $14 \mathrm{TeV}, 300 \mathrm{fb}-1$

WWW, T0 for $10^{\wedge}-12$
Rough estimate of Signifiance = Sqrt(-2 logLikelihood Ratio): NSigma: 4.66981 p-val: 1.5074e-06

Frequentist significance: MCerr = 0 NToyMC= 10000000:
invmass

Data LLR -10.9036
NSigma: 4.68497 pval $=1.4 \mathrm{e}-06$
Frequentist significance MCErr= 1 NToyMC= 10000000:
Data LLR -10.9036
NSigma: 3.2898 pval $=0.0005013$

Pileup

- Is push of events towards higher energies with the 140 PU scenario for 14 TeV
- These plots include >=3 lepton number cut and lepton charge, flavor selection

Pileup, Fewer Cuts

- Is push of events towards higher energies with the 140 PU scenario for 14 TeV
- These plots include no explicit special requirements (but of course invariant mass not sensible if there aren't leptons, so some implicit cuts)

Significance with pileup

- Same settings as slide 2 but now with pileup
- Small impact on significance
WWW, T0 for 10^-12

Rough estimate of Signifiance = Sqrt(-2 logLikelihood Ratio): NSigma: 4.4555 p-val: 4.18487e-06

Frequentist significance: MCerr = 0 NToyMC= 10000000:
Data LLR -9.92575
NSigma: 4.49985 pval $=3.4 \mathrm{e}-06$
Frequentist significance MCErr= 1 NToyMC= 10000000:
Data LLR -9.92575
NSigma: 3.12524 pval $=0.0008883$

33 TeV

- Looks like $10^{\wedge}-12$ is higher than needed, can run with 10^{\wedge}-13
- 10^-13 scans are nearly done, may take another step down as well
- Plan to finish this scan and significances for tomorrow
invmass

Back up

Snowmass Delphes, No Pileup

- I've done some runs with official snowmass delphes and smearing, following instructions from wiki
- Plot shows Madgraph Delphes and Snowmass Delphes for WWW FT0 $=10^{\wedge}-11$ (top) and SM (bottom)
- No pileup for this comparison
- 10k madgraph, 50k snowmass but both reweighted to 14 TeV crosssections
- Similar-ish shapes
- Snowmass version has more events retained after >= 3 lepton cut

Cross-sections and Ratio wrt SM for 10^-11 Couplings

Coupling	WWW	WWZ	WZZ	ZZZ
Sm Cross-section (pb)	0.000568000	0.000111800	0.000009634	0.000000972
$\mathrm{sm} / \mathrm{sm}$	1.00	1.00	1.00	1.00
$\mathrm{fs} 0 / \mathrm{sm}$	1.00	1.00	1.00	1.00
$\mathrm{fs} 1 / \mathrm{sm}$	1.00	1.00	1.00	1.00
$\mathrm{fm0} / \mathrm{sm}$	1.49	1.09	1.05	1.02
$\mathrm{fm} 1 / \mathrm{sm}$	1.18	1.02	1.04	1.03
$\mathrm{fm} 2 / \mathrm{sm}$	1.00	1.05	1.00	1.02
$\mathrm{fm} 3 / \mathrm{sm}$	1.00	1.01	1.00	1.01
$\mathrm{ft} 0 / \mathrm{sm}$	19.10	4.23	3.38	2.90
ft 1 sm	15.88	2.23	2.83	2.90
$\mathrm{ft} 2 / \mathrm{sm}$	4.61	1.33	1.35	1.54
ft 8 sm	1.00	1.00	1.00	1.31
$\mathrm{ft} 9 / \mathrm{sm}$	1.00	1.00	1.00	1.08

