

Advanced European Infrastructures for Detectors at Accelerators

AIDA

SPSC Meeting June 25th 2013

E. Noah (University of Geneva)On behalf of the AIDA collaboration

AIDA is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 262025

Outline

- AIDA project introduction
- New irradiation facilities
- Test beam activities at PS/SPS
- MIND and TASD neutrino detector protos.
- SPS low energy beamline design

Acknowledgements: R. Asfandiyarov, R. Bayes, A. Blondel, V. Boudry, A. Bross, I. Efthymiopoulos, R. Matev, G. Mazzitelli, M. Moll, F. Ravotti, L. Serin, P. Soler, M. Turner, E. Van Der Kraaij, M. Vos...

AIDA project

- AIDA is an Infrastructure Activity (IA) FP7-EU project started in Feb 2011 for a 4 years duration
- It is expected to offer /deliver facilities to the community. It contains Trans National Activities (CERN & DESY testbeam + irradiation sites), Network Activities (computing + micro-electronics) and Joint Research Activities (beam line equipment + ILC/Neutrinos/LHC detectors prototypes)
- 80 institutes from 23 EU countries
 Total budget is 26 M€ and 1960 person months
 → Strongly relying on Institutes,
 1/3 only covered by EU contribution
- Deliverables of the project need to be validated by Feb 2015 → new LHC/CERN test beam schedule impact the AIDA deliverables

New irradiation facilities

- Two facilities under construction at CERN
 - EAIRRAD in PS EAST AREA (T8)
 - Combination of a 24 GeV/c proton and mixed field facility
 - Replacing previous T7 and T8 facilities as well as CNRAD, H4IRRAD test fields
 - Aiming for typical fluence of:
 - ~10¹⁶ p/cm² in 5 days on 15x15 mm² FWHM (corresponding to 4 times higher flux than previous proton facility)
 - Construction in framework of EAST AREA renovation (PL: Lau Gatignon)
 - Equipment and design of proton facility (PH/DT) main clients: Experiments community
 - Equipment and design of mixed field facility (EN & R2E): Accelerator community
 - AIDA contribution (WP8.3): Layout and infrastructure of the proton facility
 - GIF++ in SPS H4 beam line
 - Combination of test beam with strong gamma source (17 TBq ¹³⁷Cs)
 - Main user community: Gaseous Detector performance and aging tests
 - AIDA contribution (WP8.5.3): GIF++ user infrastructure
- Both facilities expected to be operational at end of LS1

Layout of EAIRRAD facility

GIF++ in SPS North Area (H4)

- Design and construction of GIF++ (Gamma Irradiation Facility) by teams from CERN-EN & PH
- AIDA contribution: Infrastructure for the GIF++ Facility
 - Filters for radiation attenuator, beam tracker telescope, Cosmic trigger setup, radiation and environment sensors, DCS,DAQ, ...
- Location: H4 line in SPS North Area100GeV muons 10x10cm²
- **Size**: 170m² (2xGIF)
- Source: ¹³⁷Cs, 16.65 TBq (~6 Gy/h at 50 cm) 662 KeV, τ_{1/2}= 30y

· Status:

- Call for tender for the source published;
- Area preparation will start in Sept. 2013;
- Facility operational from 2015

The facility aim is to test large detector (like muon chamber) for HL-LHC

Beamline equipment

AIDA offers:

- →telescope infrastructure based on MIMOSA inherited from EUDET
- →continued support to large and diverse user base
- →development of larger, more versatile, multi-technology telescope
- →extended services (cooling, alignment box)

Telescope usage

- Telescope moved to DESY during long shutdown at CERN
- Intense programme in three beamlines (fully booked through to spring 2014)
- MIMOSA telescope duplicated several times (with non-AIDA funding)

Intense demand from a diverse community

→ Access to beams at CERN after LS1 required to relieve pressure on DESY beamlines

Existing calorimeter prototypes

Existing & tested in 2011-12

- •Tungsten structure for extensive TB (~10w/y) at CERN with CALICE sensors:
 - AHCAL (3×3 to 12×12cm² scintillator tiles with SiPM readout) 54 layers

- DHCAL (1 × 1 cm² RPC, digital mode, embedded readout), 54 layers
- S-DHCAL (1 × 1 cm² MicroMegas, semi-digital mode), 1 layer
- T3B (1 row of 3 × 3cm² scint. tiles with SiPM & picoscope readout; with DHCAL RPCs) → timing of hadronic (esp. neutron) response.
- Stainless Steel structure with ancillaries & CALICE sensors:
 - S-DHCAL (1 × 1 cm² RPC & MicroMegas [48 + 2 layers])
- Clean, Low & High energy hadrons only available at CERN

Future calorimeter prototypes

- Full Si-W ECAL 18 × 18 cm²
 - 0.5 × 0.5 cm² Silicon sensors with embedded and power-pulsed readout. R&D phase @ DESY 2013-14

High E electrons mandatory at CERN (saturation & X-talk events) [image square events]

- 2nd generation HCAL layers
 - 3x3 cm² scintillator tiles with integrated electronics →

FCAL Structure

Precision structure:
 high energy electrons, high rates, runs & irradiation tests needed (2015 ?).

Combined tests

DHCAL 210 GeV pion event display

Combined test: Trackers & Calorimeters (E+H)

- Not suitable for direct PFA studies
 - p+target → pseudo-jets:
 - wrong pT distributions; $\Omega \sim \pi$ Sr needed
- Ancillary studies for PFA:
 - Mechanical precision, EM compatibility, cooling
 - Reconstruction techniques;
 - Realistic dead material corrections;
 - Power pulsing;
- •Community building: people, formats, tools on real data.
 - Common DAQ; Pile-up;

Part of the tests can be done @ DESY (SiTr + ECAL; reduced ECAL + HCAL with low E e-)

•Full program only at CERN

AIDA Some neutrino detector proposals

Neutrino detector prototypes

- Motivation for prototypes:
 - Neutrino community: detector response for low energy interactions;
 - Beam line equipment: muon spectrometer becomes part of available equipment to test other detector prototypes (e.g. LAr, Gas TPC etc...) beyond AIDA 2015.
- MIND and TASD options:
 - Magnetized Iron Neutrino Detector: muon spectrometer;
 - Totally Active Scintillator Detector: electrons, low energy μ / π .
- Proposal/request to SPSC Q4-2013/Q1-2014.

Event topologies in MIND

v_{μ} appearance

Requires correct sign background rejection of 1 in 10⁻⁴

Planned test beam studies

Particle identification:

- Muon reconstruction in the MIND (range + bending);
- Two classes (range out in detector/leave detector);
- Direct comparison of momentum resolution between classes, also comparison of momentum measurements with data;
- μ μ distinction (good in TASD, can it be done reliably in MIND?... to an extent that low E μ measurements are viable?);
- Electron measurements in TASD.

Hadronic energy resolution/reconstruction:

- Refine CalDet results (B-field);
- Software development required, comparison with real test beam data.

Hardware:

- Plate thickness (MIND and possibly TASD);
- SiPM & electronics thresholds, especially relevant for large detectors.

Beam requirements

- e, μ, π, p:
 - -0.5 to 10 GeV/c;
 - < kHz.
- Knowledge of beam:
 - PID (esp. μ/π ratio at low momenta);
 - Timing;
 - Flux.
- Large aperture magnet for TASD
 - e.g. Morpurgo magnet on H8.

TASD layout at H8

MIND layout at H8

Detector module R&D

Optical cement tests

Photosensor tests

MPPC	Ketek
1.69	1
~ 1.4	5-6
600-1000	~800
10	~40
good	long tails
large	small
25.6	42-45
	1.69 ~ 1.4 600-1000 10 good large

Photosensor connector design

Detector module mechanics

Light yield tests

Slab width	MPPC 1 L.Y.	MPPC 2 L.Y.	$\Sigma_{L.Y.}$ [1+2]	
[mm]	[p.e.]	[p.e.]	[p.e.]	
Chemical reflector				
10	46.0	36.8	82.8	
20	39.7	35.7	75.4	
20	32.6	28.2	60.8	
30	31.2	26.6	57.8	
Chemical reflector, w/o optical grease				
20 - grease	25.7	22.1	47.8	
Chemical reflector + Tyvek paper reflector				
20 + Tyvek	49.3	44	93.3	

MICE EMR @ UNIGE

H8 low energy beamline

- Potential users:
 - Neutrino community;
 - ATLAS, others?
- Length of beamline limited to 50m
 - Two beamline options, study funded by AIDA.

H8 beamline layouts

Low E e and π beams

Pion beam to exp: 80 GeV pencil beam incident on Be target $(50\% \ \pi, 50\% \ p)$

Electron beam to exp: 80 GeV e beam incident on lead target

Summary/Outlook

- AIDA activities end "formally" 31 Jan. 2015 :
 - Need to have access to test beam at CERN at restart after LS1 (neutrino detectors, ILC tracker and calorimetry) to validate the deliverables → Request to SPS committee.
- Equipment/facilities improvements produced by AIDA delivered to CERN after project-
 - Longer term maintenance and support of this equipment is a concern if no new EU project.
 - "AIDA continuation" topic selected during Infrastructure Activity survey done by EU, possible inclusion in first call early 2014.
- Low energy beam line
 - Design has been conducted under AIDA project (detailed report available soon). Neutrino community to make request for construction at CERN in a next SPSC.