

Martino Colciago (EN-STI-ECE)* Low level control upgrade to the ISOLDE High Resolution Separator magnet

HIE-ISOLDE WORKSHOP, 28-29 November 2013

 The research project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Programme under contract number (PITN-GA-2010-264330-CATHI)

Outline

+ Introduction

+ Front end system architecture (FESA)

- + Control system
- + Matlab simulation
- + Conclusion and future steps

Introduction: system overview

Scope: develop a new control system for the High Resolution Separator magnet (HRS) in order to achieve better performances for HIE-ISOLDE.

What is the HRS?

Isolde has two mass separators and they are used to separate the ions generated in the facility, according to their mass.

IISTRAL

REX-ISOLD

NICOLE

HRS= High Resolution Separator (90° and 60° magnet)

GPS= General Purpose Separator (70° magnet)

Introduction: HRS migration plan

System upgrade

+ Update currently used system to BE/CO standard:

- converts the *hrsmagrt* class to *FESA*3 (developing the NMR *gpib* driver)
- + Control algorithm:
 - develop a faster control algorithm for the HRS

FESA: system introduction

The FESA framework is a comprehensive environment for equipment-specialists to design, develop, test and deploy real-time control software for front-end computers

- The HRSControl FESA class is instantiated on a Kontron industrial pc and it includes the current in use control algorithm as a Black Box.
- Interaction through BE/CO functions with:
 - GUI
 - PowM1553 FESA3 class
 - After 2016 FGC3 gateway
- + The new ethernet/gpib communication driver allows interact with:
 - NMR

FESA: system introduction

The FESA framework is a comprehensive environment for equipment-specialists to design, develop, test and deploy real-time control software for front-end computers

- The HRSControl FESA class is instantiated on a Kontron industrial pc and it includes the current in use control algorithm as a Black Box.
- Interaction through BE/CO functions with:
 - GUI
 - PowM1553 FESA3 class

- After 2016 *FGC*3 gateway
- + The new ethernet/gpib communication driver allows interact with:
 - NMR

FESA: new classes

- The classes are going to be migrated to the new FESA3.
- Old user attributes unchanged
- New functionalities
 - Possibility to reset the NMR by software
 - Possibility to change the device connected (NMR,FGC, PowM1553 class) without stopping the class
 - A time stamp and measurement status have been added to the NMR value
- A test bench is almost set up to test the whole system

HRSControl PROPERTIES EXPERT ONLY ExpertSettings USER/EXPERT + UserSettings **ExpertManControlSetting** + + PowMExpertSetting **PowMAcquisition** + + FqcExpertSetting FqcAcquisition + + NmrExpertSettin **NmrAcquisition** + + **METHODS** Real_time_action RunControl Real_time_action CheckRbacToken + **NMR** PROPERTIES fieldTimestamp +

EXPERT ONLY

reset

METHODS

fieldMeasure

fieldStatus

USER/EXPERT

- + Real_time_action Read
- + Real_time_action Reset

+

+

System upgrade: control algorithm

+ Update currently used system to BE/CO standard:

- converts the *hrsmagrt* class to *FESA*3 (developing the NMR *gpib* driver)
- + Control algorithm:
 - develops of a faster control algorithm for the HRS

Control system: system introduction

- The control algorithm is developed with Labview Real Time on a PXI platform.
- The GUI will be the same as HRSControl thanks to the FESA class instantiated on a Kontron industrial pc.

+ The FESA class allows:

- exchanges of data with the user interface through standard BE/CO functions
- sends the current reference calculated by the algorithm to the *FGC*3 gateway

Control system: overview

Physical overview of the control system

BASIC IDEA:

- + The control system compares the measured value with the desired one.
- + The magnetic field is measured with a Nuclear Magnetic Resonance (NMR) sensor.
- + It calculates the reference current to feed the magnet.
- + New current set point is sent to the power supply each cycle.

Control system: implementation

- + The Proportional Integral Derivative (PID) feed back controller
- + Observer combines measurements with model estimation
- Feed forward consists of the a priori knowledge of the system (magnet model + eddy current model)

Teslameter PT2025

Control system: PID controller

AIM: monitor and modify the system process variable to reduce the difference between desired value and the system output

+ PID controller

$$K_p e(t) + K_i \int e(t)dt + K_d \frac{de(t)}{dt}$$

 $K_p = proportional gain;$ $K_i = integral gain;$ $K_d = differential gain.$

+ Other elements:

 $u(t) = B_{ref}$ and $y(t) = B_{meas}$ by NMR

- <u>anti-windup</u>: excludes the error integration if the output variable is saturating —> fast reaction of the control system;
- <u>bump-less strategies</u>: limits the switching noise provoked by auto and manual control switching (pre-cycle – manual control);
- Tuning strategy: <u>Loop shaping control according to the stability constraints</u>

Control system: observer model

AIM: estimates the magnetic field value

- + High frequency magnetic field flux evaluation
- + Avoid holes in measurements (NMR blindness)

HOW:

+ Static

- Coleman-Hodgdon hysteresis model (modified Duhem model)
- + Dynamic
 - First order model of the system delay:

$$G(s) = \frac{k}{1 + \tau s}$$

Where: k = system gain τ = system time constant

- Eddy current model on study in collaboration with the magnetic measurements section
- Device (FGC₃) dynamics are negligible compared to those of the system

M. COLCIAGO

Control system: observer model

COLEMAN-HODGDON MODEL

 $\dot{B} = C_{\alpha} \left| \dot{H} \right| [f(H) - B] + \dot{H}g(H)$

- Where: B = magnetic fluxf(H) = odd, monotone increasing, real valued functionH = magnetic fieldg(H) = even, real-valued function
- Ordinary differential equation hysteresis model

 Large variety of hysteresis shapes according to f(H) and g(H)

- + Physical model
- + Unidirectional

+ Counterclockwise

Rate independent

Soft ferromagnetic model

$$f(H) = \begin{cases} Ca[H + H^*] - bH^* \text{ for } H < -H^* \\ bH & \text{for } H < -H^* \text{ and } H > H^* \\ Ca[H - H^*] + bH^* & \text{for } H > H^* \end{cases}$$
$$g(H) = \begin{cases} u & \text{for } -H^* \le H \le H^* \\ Ca & \text{for } H < -H^* \text{ and } H > H^* \end{cases}$$

Model constraints:

- + $C_{\propto}, C_a, b, u, H^* > 0;$
- + b > u

+
$$b-u < u [1-e^{-2C_{\alpha}H^*}]$$

+
$$b - u < C_a [1 - e^{-2C_{\propto}H^*}]$$

Observer update according to:

$$B = \hat{B}_{sim} + k * (B_{nmr} - \hat{B}_{sim})$$

Control system: observer model

- + Off-line hysteresis parameter estimation:
 - low frequency signal input to avoid dynamics;
 - detection of the parameters from main loop;
 - non linear fitting (trust region to respect constraints);
 - average parameter values;
- + Off-line dynamics parameter estimation
 - high frequency signals
 - eddy current parameters estimation

 H^* is the value of the saturation starting point u is the slope value of the hysteresis at H = 0 C_a is the limiting slope for large H

Simulated hysteresis

Control system: feed forward

 AIM: improves the control of the magnetic field in open loop using a priori system information

- Ideal case: it predicts the process input variable behaviour to obtain the desired output (perfect tracking)
- Real case: the idea is to invert the magnet model in order to avoid the non linearity of the system
 - Inversion of the Coleman-Hodgdon model using the lambert function (calculated by numerical integration on-line)

Control system: stability

+ The PID feedback loop with differential hysteresis is asymptotically stable:

 $dvnamic m_1\dot{h} + k_1h$

C-H Hysteresis

+ Stability condition hypothesis

PID

- 1) If the input is continuous \longrightarrow output continuous
- 2) The hysteresis is monotone \longrightarrow (ferromagnetic hysteresis)
- 3) The hysteresis operator is Lipschitz
- 4) The hysteresis is multi-bracket continuous

 d_1

5) The output is bounded (saturation)

The PI limiting condition $(k_d = 0) \longrightarrow 0 < k_i < \frac{k_p k_i}{m_1} < \frac{k_1^2}{\lambda m_1}$

The PID limiting condition $\longrightarrow 0 < k_i < \frac{k_p k_1}{m_1} < \frac{k_p k_1}{\lambda k_d} \quad 0 < k_p < \frac{m_1 k_i}{k_1} + \frac{k_1}{\lambda} \quad 0 < k_d < \frac{m_1 (k_p k_1 - m_1 k_i)}{k_1^2}$

"H. logemann B. Jayawardhana and E. P. Ryan. Pid control of second order systems with hysteresis. International Journal of Control, 2008."

Where: d_1 = input noise

 $d_2 =$ measurements noise

r = reference signals

Matlab simulation: system

HIE-ISOLDE Workshop, 29 November 2013

average = 0.1%

+

M. COLCIAGO

NMR: $WN(0,5e^{-6})$

÷

Matlab simulation: results

Improved control performance achievable with PID tuning

Conclusions and future steps

+ Updating system — the FESA2.10 classes have been developed

the gpib driver for the NMR has been realised

- Migration to FESA3 (on going)
- Test the system on a test bench
- Control algorithm a feed back control system has been presented
 - Hysteresis inversion
 - Parameters tuning on the HRS (Hysteresis, controller, Magnet model)
 - Eddy current model
- + Labview real time ——> the system architecture has been developed

→ the control algorithm has been implemented

- The FESA3 class has to be developed
- The feed forward element has to be added

Thank you for your attention

Back up

Back up: lambert function

The LambertW function is the inverse of $W \rightarrow z = We^{W}$

It has to be solved (approximated) with numerical integration algorithm Ex. Fritsch method, Newton method

With Fritsch method in tranche x > $-\frac{1}{e}$ After 1 step -> accuracy = 10^{-5} After 2 step -> accuracy = 10^{-16}

Test are on going

