

HIE-ISOLDE Design Study

Richard Catherall EN-STI-RBS ISOLDE Workshop and Users Meeting 2013 $25^{\text{th}} - 27^{\text{th}}$ November 2013

- High Energy Upgrade
 - SC Linac to attain 10Mev/u

The ISOLDE Facility

High Intensity Upgrade

Protons/pulse	Intensity (μΑ)	Energy (GeV)	Cycle (s)	Power (kW)
3.3x10 ¹³	2.2	1.4	1.2	3.1
1x10 ¹⁴	6.7	1.4	1.2	9.3
1x10 ¹⁴	6.7	2.0	1.2	13.3

Projected beam parameters considered within the HIE- ISOLDE Design study. Based on ISOLDE receiving 50% of available proton pulses from the PS-Booster.

Benefits For ISOLDE

- High Intensity
 - Improve the production rate of exotic nuclei
 - More efficient operation of the Facility
- High Energy

- *Based on the extrapolation of previous measurements of isotope production at 600 MeV, 1 GeV and 1.4 GeV and on cross-section calculations;
 - an average gain of 40% for fission products
 - a factor of x2 to x5 gain for fragmentation products
 - an increase by a factor of 6 for exotic spallation products.
 - *LOI submitted to INTC

M. Borge et al. Motivations to receive a 2 GeV proton beam at ISOLDE/HIE-ISOLDE: Impact on radioisotope beam availability and physics program. CERN-INTC-2012-069 / INTC-O-016

High Intensity Upgrade

- Issues being addressed:
 - Radiological
 - Interventions/maintenance
 - Air activation
 - Contamination
 - Infrastructure
 - Shielding
 - Target and Front End
 - High Voltage
 - Beam dumps

Beam quality improvement

- Improved mass resolution
 - RFQ Cooler placed before the separator magnets
 - Pre-mass separator
 - New HRS magnet design
 - Construction of a new off-line separator
- Converter targets
- High Energy Compression and Current (HEC²) EBIS for REX-ISOLDE

Target Materials

- Carry out simulations of proton beam interactions with existing and potential target materials using FEM structural codes
- Establish experimental programme to validate the simulations and verify the production rates and diffusion constants for different material prototypes.
- Post analysis of samples
- Silicon Carbide and Alumina prepared with ice-templating method in collaboration with St. Gobain
- Irradiation of SiC samples already done
- More samples to be irradiated using the HIRADMAT facility

See presentation by Michal Czapski

Targets: RIB Purification

• Neutron spallation source design study:

Online tests at TRIUMF in 2014. Energy: 500 MeV; Intensity: 100uA.

See presentation by S. Cimmino

See presentation by S. Cimmino

Front End: Pre extraction prototype

Without electrode movement mechanism
Electrode head exchanged with target unit without human intervention
Intermediate voltage works as focalization lens
Intermediate electrode customizable for each target unit

60 kV 57 kV Ground

See presentation by J. Montano

REX-EBIS: Electron Beam Ion Source for HIE-ISOLDE

Priorities and the goal setting

Design values for EBIS (HIE-ISOLDE/TSR@ISOLDE application) / available now with REXEBIS	
Electron energy [kV]	150 / 5
Electron current [A]	2-5 / 0.2
Electron current density [A/cm ²]	1-2x10 ⁴ / 100

New EBIS – High Energy Compression and Current (HEC²) EBIS

Main challenge – produce the high compression electron beam

Goal – have a reliable design of the HEC² electron gun on earliest possible stage

Realization – in a joint effort with BNL, based on BNL design and infrastructure (BNL Test-EBIS), funded and manned by CERN

See presentation by A. Shornikov

ISOLDE offline separator #2

<u>Purpose</u>: testbench for the validation of principles regarding the High Resolution Separator upgrade

Proposed HRS layout

- ✓ Detailed definition of experimental setup
- ✓ Dipole characterization
- ✓ Magnetic field mapping

See presentation by M. Augustin

RFQ Cooler

- RFQ Cooler will be part of the test stand
- Under construction
- Approach
 - Alignment
 - Adjustable alignment of the electrodes
 - Pressure gradient
 - Reduce pressure at injection and extraction electrodes by adding more holes to the plates
 - CST Particle Studio used:
 - To simulate particle trajectories
 - To provide acceptances on parts of the machine
 - To diagnose electrical charge build up
 - Shapes, voltages and distances can be simulated

Magnet Controls

- New control under development using LabVIEW Real Time
- Control loop

- Use an industrial control: Proportional-integral-derivative control (PID) with anti-windup scheme
- Develop a Hysteresis model to support the NMR during blind time
- Matlab-Simulink is used as simulation software

See presentation by M. Colciago

Sketch of vacuum layout for offline RFQCB test stand:

- Fast Valve Systemfor SC Linac
- To avoid contamination of clean cavity surfaces in the event of an accidental air leak.
- Gas dynamics and choice of material will be presented

See presentation by M. Hermann

Ventilation

17

Status of FLUKA simulations for the Experimental Hall, Storage Area and MEDICIS

In the current layout: Direct dose (neutrons from target) - a

> Levels obtained too close to limits, leaving almost no margin.

Dose from stored targets - b

> Levels within limits, any further shielding to fix the previous issue can only improve this.

Dose from activated elements

> Still under evaluation. Might cause changes and lead to re-evaluate a & b.

HRS Beam Dump

High Voltage

- During proton beam impact extremely high ionization of the volume around the target gives rise to significant leakage current.
- loss of charge on the effective target capacitance
 - mitigated by modulating the target voltage to zero just prior to beam impact
 - HT pulsing
- The new design is based on a HV MOSFET switch technology of type 'Behlke'

Time Line

The Design Study Report

- Document describing all the issues addressed throughout the design study period
- High Intensity
 - Targets; thermal analysis, design and materials
 - Front ends
 - High voltage
 - Operation
- Infrastructure
 - Beam dumps
 - Radiation protection
 - Ventilation and cooling
 - Vacuum
- Beam Quality
 - RIB Purification
 - HRS magnet design
 - RFQ Cooler
 - New REX-EBIS
- Cost and Timeline

Report: Deliverable for the Autumn 2014

Time Line

• Thank you for your attention