

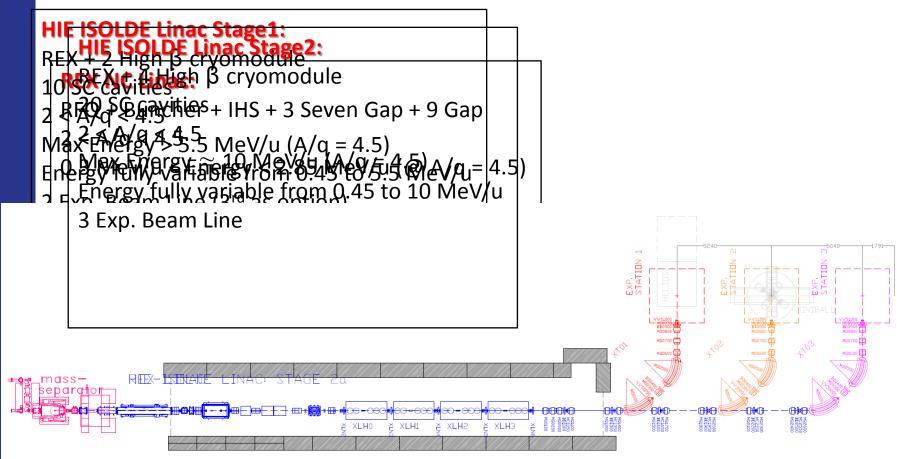
HIE-ISOLDE Commissioning Plan & Operation Software

D.Lanaia*, M.A. Fraser, D. Voulot

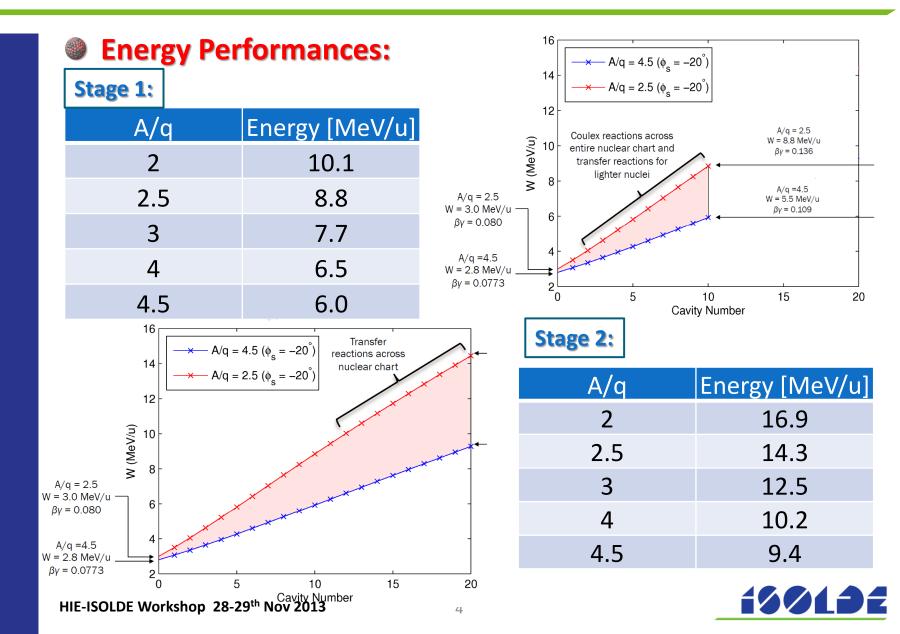
*The research project has been supported by Marie Curie Early Initial Training Fellowship of the European Community's Seventh programme under contract number (PITN-GA-2010-264330-CATHI)

HIE-ISOLDE Workshop 28-29th Nov 2013

Outline

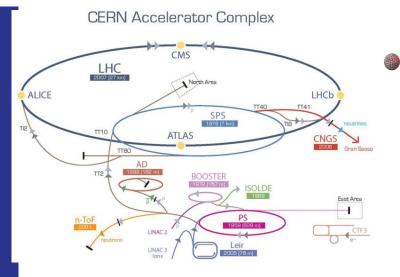

- Introduction
- Timeline for commissioning
- Control System & Generic CERN Applications
 - 3 Tier Architecture
 - ✓ F.E.S.A. Class (Front End Software Architecture);
 - ✓ InCA (Injector Control Architecture);
 - TIMBER (Login and data monitoring)
- REX ISOLDE's Software and Applications
 - REX EBIS and Trap
 - Working Set & Equipment Array
 - Beam Diagnostic Application
 - Mass & Energy Scan
- Specific applications for HIE-ISOLDE
 - Beam Diagnostic Concept
 - > T.O.F. (Time of Flight)
 - HIE-Phase-Up
 - HIE-Converter
 - Setting Generator
- Conclusion

Introduction



- RIB: Weak and difficult to detect in standard diagnostic
- Scale: Standard way of machine tuning

HIE-ISOLDE: Energy Performances



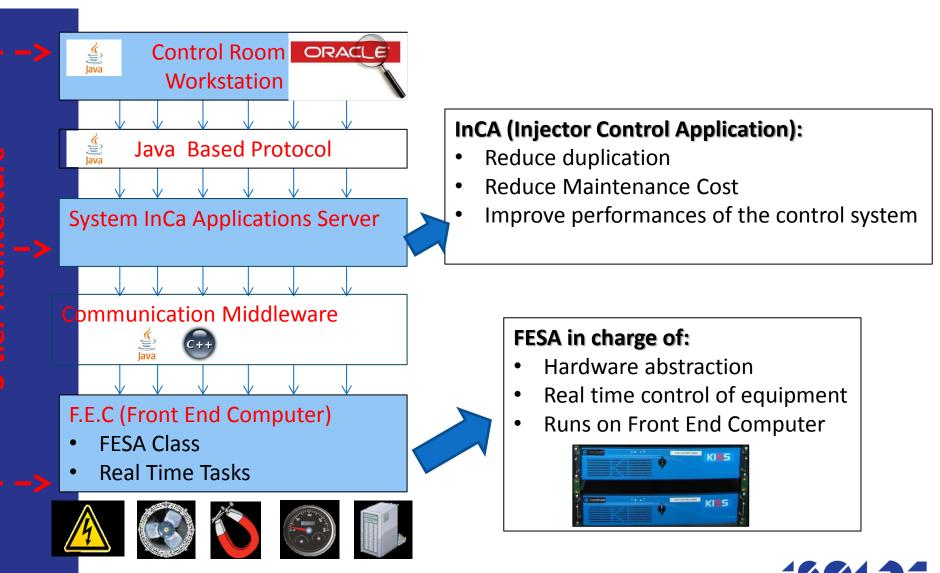
Time Line for Commissioning

					20)14								201	5							2	2016	;		
	J	F	MA	A IV	1 J	l '	A S	0	N D	J	F۱	ΜA	Μ	l l	А	S	O N	I D	ΙI	M	I A	МJ	l	A	s c	N
LS1 & shutdowns																										
Civil engineering																										
Ventilation																										
Cooling water																										
Power																										
Safety																										
Compressor installation and commissioning																										
Cryogenics installation (cold box and transfer line)																										
Cryogenics commissioning																										
Hall extension clearing																										
Dismantle REX beamlines																										
Miniball move																										
Tunnel extension + mecanical structures																										
Cabling + piping																										
Cryomodule 1&2 installation																										
RF installation and low level test (phase ref line)																										
Power converters installation																						Ц				
Power converters commissioning													Г)rv	. r					ck						
Magnet installation and alignment													L	י וי	y i	u	C	`h	۵٢	·k	0	+				
Magnet commissioning													Ν	10	V	1		-11	Cl	~	U	uι	,			
BI installation													'	10	v	1	R	دم	m	۱C	`∩	m	m	ic	cin	าท
BI commissioning (HW)																										
Vacuum installation																	Ιu	In	P	15	5 -	_ <	Se	'n	15	
Vacuum commissioning												X	\sim						<u> </u>				~			
Drt run/ hardware commissioning																					\sim					
Machine Check up		Ц													4			\square				\square		\prod		
beam Commissioning (phase1)														<u> </u>												
Physics at 5.5 MeV/u																										
		Construction/ Installation		on		Periodic dry run					run	s				В	eam	Cor	nmi							
				Equi														eck c		_			_		cs at	

CERN Control System

CERN has an integrated **control infrastructure** deployed over **all** the CERN accelerator complex.

> Advantages:


- ✓ Many generic applications/tools
- ✓ Support BE/CO
- ✓ Portability
- Boundary conditions:

- ✓ Need to follow standard architecture
- ✓ Programming: language Java

Controls Software Infrastructure

Application Strategy for HIE ISOLDE

- HIE ISOLDE Applications will be fully integrated in the CERN control system
- Use of general tools developed for CERN
 - > DIAMON
 - ➤ TIMBER
 - ➢ INSPECTOR
 - Working Set
- Use of existing application developed for REX-ISOLDE
 - Upgrade where needed
- Development of specific new application for HIE ISOLDE
 - > Converter
 - Phase Up
 - Time of flight

Timber: Login and data monitoring

Developed for LHC

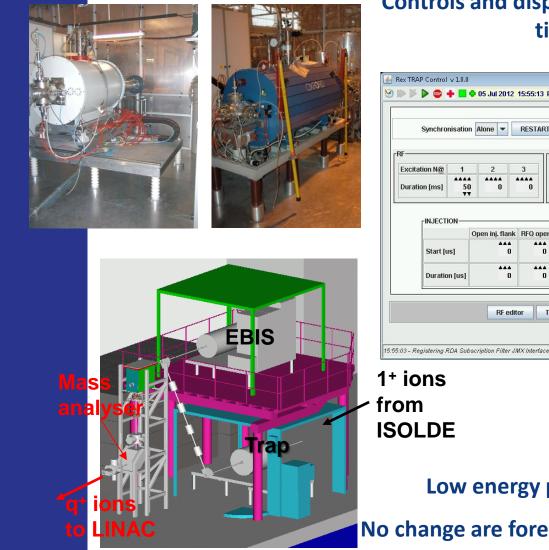
TIMRER can extract time series data from multiple data source

	carcinitia	indamental Browser 🛛 🍃 Variable Hie	Variau	le Search 👔 🚺	variable List	s 🔄 🔄 Snapsh	ots 🏘 be	ttings 🛛 🐻 H	heip		
ierarchy Variable Selection											
ROOT		Variable Filters						Selected Va	ariables		
⊡…● ADE		Name: %		Type: %		-		Variable Na	ame		ieu
ATLAS											
		Search Results									
		Variable Name		Description	Unit	Datatype	Info				
COLLIMATOR		YLAO.BEH10:V_MEAS		Measured vo		NUMERIC	ML				
		YLAO.KIK70-NEG:V_MEAS		Measured vo		NUMERIC	ML				
		YLAO.KIK70-POS:V_MEAS		Measured vo		NUMERIC	ML				
Option Option		YLAO.OP20:V MEAS	Chart 1								్ద్ 🛛
•• ENS		YLAO.QP30:V_MEAS	Timeseries Chart between 2012-03			Cursor Coordinates		set Stack-	on-White	-	
 • Fundamental Data		YLA0.QS40-B:V_MEAS	+ BTY.BCT.112.TOTAL_INTENSITY + BTY.BC			(ore, not) intered by ru	induite includ				
		YLA0.QS40-L:V_MEAS									
∽⊳ Isolde		YLA0.QS40-R:V_MEAS				AND DO NO.		-			-3500
		YLA0.QS40-T:V_MEAS	3500								
					hul	and Calendary	Land Martin Collector	and the strength of the	ade the and the second second second	and a second s	- 3000
⊕• CC0			3000		144	ALL REVIEWED	Ania un Mariak	California Managera (San A	A IN	and the state of the state of the state	
i∰…● CD0											12,004
🗄 💿 GPS			2500						_		- 3000
🖶 💿 HRS											
<u> </u>	=		2000								- 2000 음
Magnets			3								ages E
			1500								-1500
⊡● LA2			1900								
i⊞~● LA3			7.000								- 1000
i∰… ● LA4			1000								1000

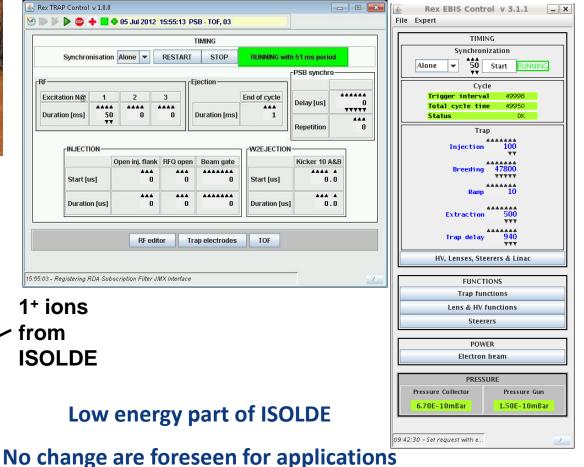
Inspector: Integrate Synoptic

- What is it?
 - Graphical framework implemented in Java that allows to control and to monitor any CERN standard equipment.

Courtesy of: M. Ferrari (BE-OP) & L. Bertrand (BE-OP)

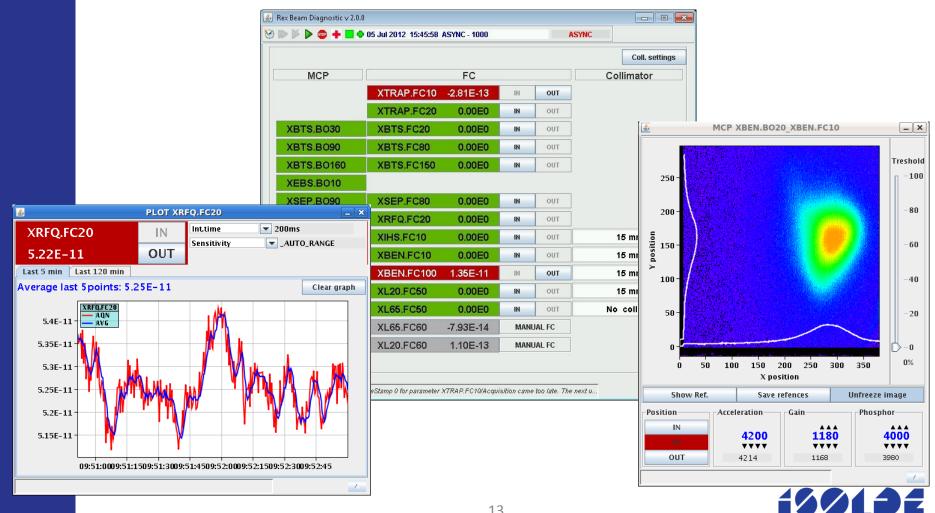

Working Set & Knobs, Equipment Array

The Working Set

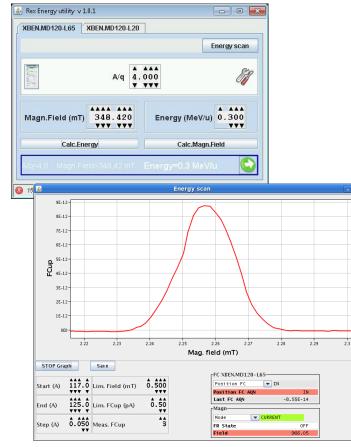

group devices together so that generic applications for display acquisition and controls properties can be seen and controlled in a grouped way.

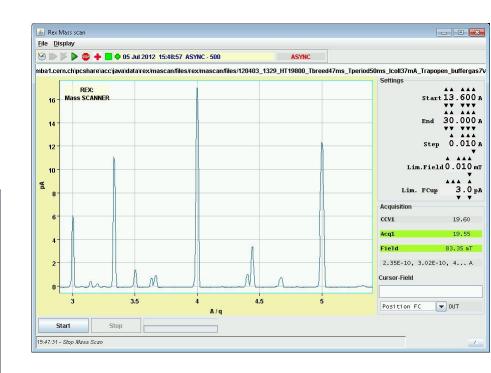
Eile General REX Tools Test REXTap) REXTap) REXTap) Finite Viet Image: Constraint of the Viet of th	Ative Tasks	
	Getting WorkingSet definition contents from database Creating JAPC descriptors and CMW devices.	

REX - ISOLDE Applications (EBIS & Trap)


Controls and display all REXEbis devices and time settings

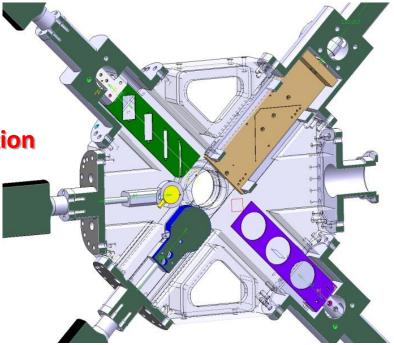
199192


REX - ISOLDE Applications (Beam Instrumentation)

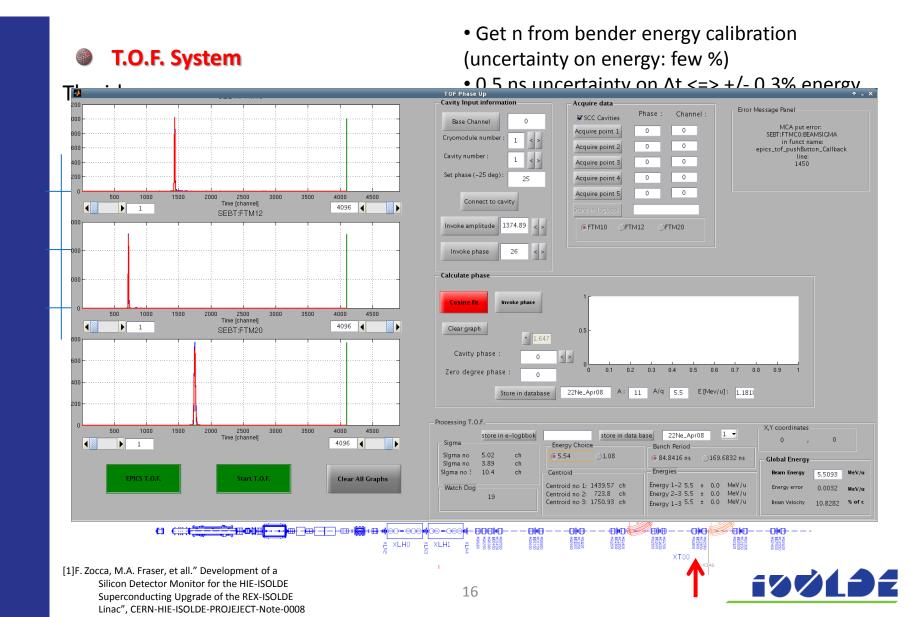

Mainly Faraday Cup Based + MCPs

REX - ISOLDE Application (Utilities)

- Mass Scan: Identification of mass peaks and correct A/q selection before the REX - RFQ
- Energy Scan: Scan the field of the separator magnet after REX to find the energy

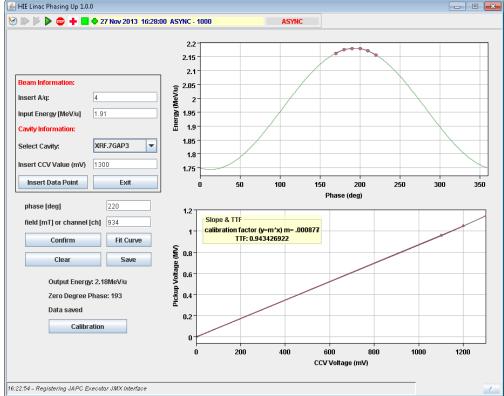

Beam Diagnostics

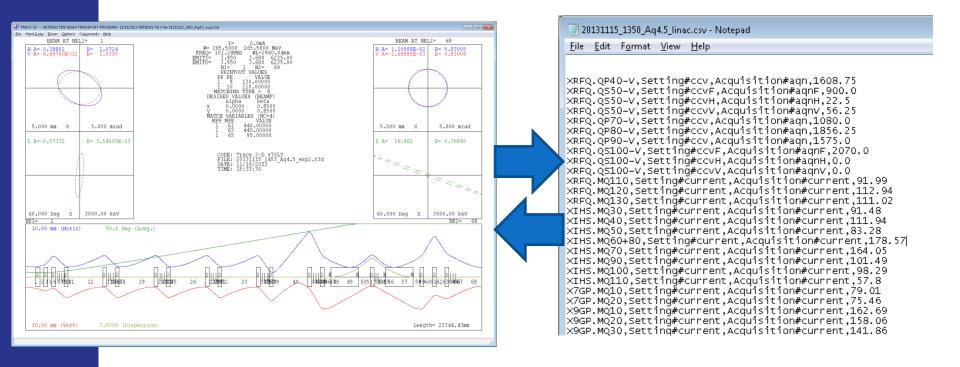
- Beam Intensity and Transmission: Faraday Cup
- Energy & Time Spectroscopy: Si detector
- Transverse profile & position: Scanning Slit


Same Concept of the REX Beam Diagnostic Application

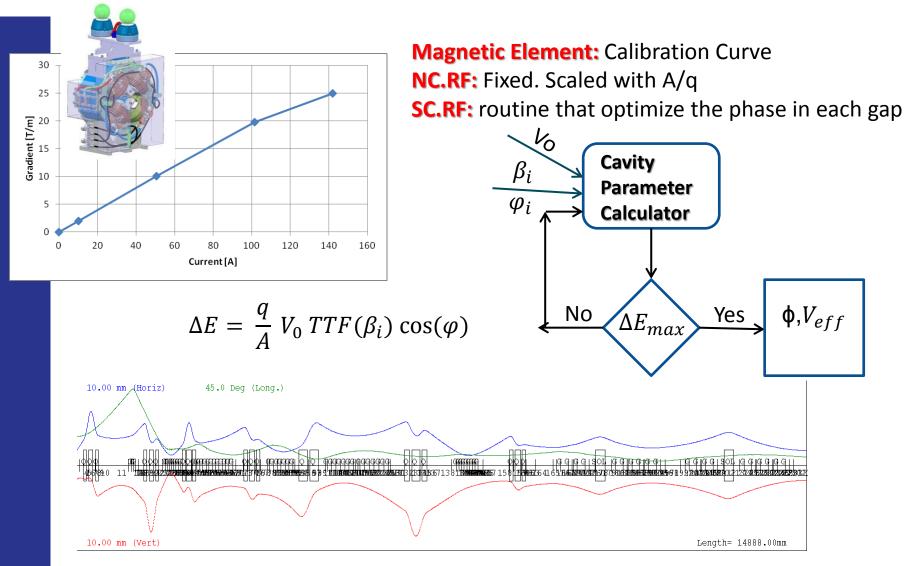
Detailed presentation by:

- E.D. Cantero
- A. Garcia Sosa

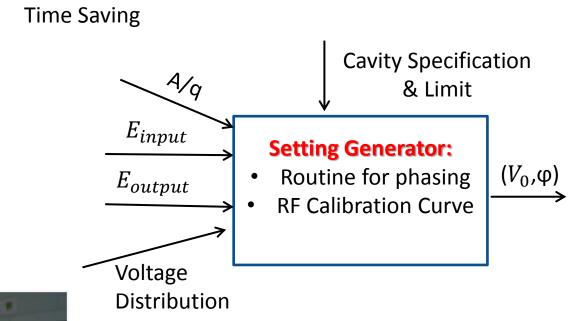



Cavity Phase Up

- REX: NC machine with fixed velocity profile. -> Phase-up check once per year at machine starts
- HIE-ISOLDE: SC machine -> 32 independently-phased cavities (variable velocity profile). Different phasing for each beam and energy.



HIE Converter: Converts optics setting coming from Trace3D in Eq. Array format and vice versa.





Setting Generator: Generating SCRF setting from few beam input

Summary and Conclusion

- Beam Commissioning: Foreseen in June 2015, last for 3 months
- HIE ISOLDE Control System: Fully integrated with CERN system
 - InCA
 - > DIAMON
 - > TIMBER

HIE - ISOLDE Application:

- Keep the same concept of the ISOLDE one. ISOLDE Application will need to updated for the new devices
- Minimize the need of new application
- New Application have been developed and test have been performed at ISOLDE
- > Debug will be done as much as possible before beam commissioning

Next task:

- Implement the setting generator
- Implement the T.O.F. application

Acknowledgments

- Special Thanks for help and support to:
 - Didier Voulot
 - Matthew Fraser
 - Emiliano Piselli
 - Miguel Lozano Benito
 - Erwin Siesling
 - Fredrik Wenander
 - Pascal Fernier
 - All the ISOLDE Team

Thank you for your attention

