Introduction

Shielding analysis

Monitoring system

Conclusion

Radiation protection study for the HIE-ISOLDE post-accelerator

A. Dorsival, S. Giron, J. Vollaire

CERN (DGS-RP)

HIE-ISOLDE workshop 28-29 November 2013

< 回 ト < 三 ト < 三

Radiation protection study - HIE-ISOLDE workshop

Energy upgrade : RP hazards increase at HIE-ISOLDE

Neutron emission

Energy above the

Coulomb barrier

combination

beam losses for ions accelerated above the Coulomb barrier (low intensity)

Energy upgrade : RP hazards increase at HIE-ISOLDE

Neutron emission

beam losses for ions accelerated above the Coulomb barrier (low intensity)

X-ray emitted from cavities

from 400 keV to 900 keV max energy with SC cavities

combination

Energy upgrade : RP hazards increase at HIE-ISOLDE

Neutron emission

beam losses for ions accelerated above the Coulomb barrier (low intensity)

> replaced by a SC linac Energy above the Coulomb barrier

for most target/projectile combination

X-ray emitted from cavities

from 400 keV to 900 keV max energy with SC cavities

Production of radioactive isotopes

existing at ISOLDE

Introduction

Shielding analysis

Monitoring system

Conclusion

Constraints and challenges

- Accelerator inside the experimental hall
 - + keep the current classification of the area
 - + maintain the X-ray background at low levels
- Consider space constraints and integration of all services necessary (HV, RF, He supply and exhaust)
- Define the radiations source term for shielding design

Introduction ○○●	Shielding analysis	Monitoring system o	Conclusion
Strategy			

- Review of existing similar facilities (Triumf & Legnaro)
 ⇒ X-rays identified as the main radiological hazard (low intensity beams compared with ISAC2 where the experimental hall is accessible)
- Measurement of X-rays emitted by RF cavity prototypes (depends on cleanliness and surface state of the Nb deposit)
- Conservative approach to extrapolate the maximum dose rate for the operation of several cavities in parallel
- FLUKA calculations with a detailed layout of the shielding enclosure to identify possible weaknesses and access restrictions

(ionisation chamber)

Monitoring system

3 RF modes of operation / max dose rates measured

a) Normal operation (Q₀ measurement) : 20 mSv/h

c) He processing for cavity conditioning : 350 mSv/h

b) Normal cavity conditioning : 20 mSv/h

X-ray emission : measurements

Nb/Cu cavity on its test frame

Radiation protection study - HIE-ISOLDE workshop

< ロ > < 同 > < 回 > < 回 >

Monitoring system

X-ray emission : measurements

Nb/Cu cavity on its test frame

- a) Normal operation (Q₀ measurement) : 20 mSv/h
- b) Normal cavity conditioning : 20 mSv/h
- c) He processing for cavity conditioning : 350 mSv/h

Radiation protection study - HIE-ISOLDE workshop

Introduction

Shielding analysis

Monitoring system

Conclusion

X-ray emission : test bench simulations

S. Giron

Test bench implemented in FLUKA

- Generating e- beam at 900 keV (max energy) impinging on cavity wall
- Dose rate normalized to 350 mSv/h at monitor position

Simulation of a RF cavity in the cryostat during He processing

< ロ > < 同 > < 回 > < 回 >

Monitoring system

Conclusion

FLUKA calculations for the shielding

Detailed geometry of the tunnel implemented in FLUKA (penetrations, doors...)

Objectives of Monte Carlo simulations

- Validate shielding requirements : design objective for the bulk shielding remain below 1 µSv/h due to X-ray from cavities
- Identify possible weaknesses

FLUKA simulations for X-rays

Source term

- 600 keV / 900 keV (low / high beta) electrons randomly distributed between 32 cavities
- Normalisation factor from SM18 conditions for He processing in all cavities (pessimistic)
- Normal operation and conditioning dose rates should be lower by at least a factor 10

He processing of 32 cavities Horizontal cut at beam axis height

Introd	luct	n

Monitoring system

Conclusion

FLUKA simulations for X-rays

- Many penetrations on the roof (empty in the geometry)
- Hundred of μ Sv/h on the roof during He processing :
 - + No access to the roof during RF operation
 - + Could be relaxed if acceptable levels measured

He processing of 32 cavities Vertical cut, beam axis

Introduction	Shielding analysis	Monitoring system	Conclusion				
000	○○○○○●○	o					
Shielding status							

Lateral concrete blocks have been delivered and installed

Assessment of the up-beam part of the shielding ongoing (1 cm of lead today)

Introduction	Shielding analysis	Monitoring system	Conclusion				
000	○○○○○●○	o					
Shielding status							

Lateral concrete blocks have been delivered and installed

Assessment of the up-beam part of the shielding ongoing (1 cm of lead today)

Free access to the experimental hall at all time

Radiation protection study - HIE-ISOLDE workshop

Shielding analysis

Monitoring system

Doop rates at 00 degree for a 1 ppA intensity

10-3 -200 -100 0 100 200 300

イロト イポト イヨト イヨト

Ion beam losses

									DUSE	Tales	aı	30 0	legiee	101	aı	ррл	111101151
Dose		rates	(μS	Sv/h) a	at 1m	and	90	degree	e line la contra de la contra d			^			He 19.8	MeV/amu MeV/amu	
Beam	A/q	Energy (M	eV/u)	Intensity (pp	A) Neutron dose rate (uSv/h)	Comment			ose Rate P				N	E	Ne 11.3 Kr 11.8	MeV/amu MeV/amu	
?	2	19.8		1	<1	Radioactiv	e beam (limit case)	□ 10 ⁰		/		1		1		
Ne5+	4	11.3		4	1	Stable pilo	ot beam		-	/							
N4+	3.5	12.6		5	2	Stable pilo	ot beam		101			/	$\langle \rangle$				
He2+	2	19.8		10	9	Stable pilo	ot beam		í í							_	
Ne5+	4	11.3		200	50	High inten	sity stabl	e beam	10-2					\sim		$\overline{}$	~~~~~
									·						+	1	m.

For ion beam intensities foreseen at HIE-ISOLDE (< 20-30 pA)

- Very low intensities for physics with RIBs
- For beam tuning of the machine with stable beams, higher intensities can lead to higher dose rates
 - \Rightarrow small exclusion areas around beam losses spots (a few hours during specific beam tuning)

Distance Icr

Radiation monitoring system

Monitoring system around the post-accelerator

- XRM (X-ray monitor) for pulsed x-ray
- AMF (Area Mixed Field Radiation monitor) for n, γ

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion and perspectives

What was done up to now

- $\bullet~$ Comparison with existing facilities \Rightarrow X-ray main hazard
 - + Maximum dose rate for different cavity operation phases
 - + Conservatism in the approach used (max e- energy, prototype performances, all cavities conditioned in parallel)
- Ion beam intensity much lower than at ISAC2 (TRIUMF) with the hall accessible to users
- RP monitoring designed for X-ray and higher beam energies

< ロ ト < 同 ト < 三 ト < 三 ト

Conclusion and perspectives

What was done up to now

- Comparison with existing facilities \Rightarrow X-ray main hazard
 - + Maximum dose rate for different cavity operation phases
 - + Conservatism in the approach used (max e- energy, prototype performances, all cavities conditioned in parallel)
- Ion beam intensity much lower than at ISAC2 (TRIUMF) with the hall accessible to users
- RP monitoring designed for X-ray and higher beam energies

In the future

- Existing hazards and corresponding RP procedures will remain (contamination risks when opening the vacuum system and dose rate in case of strong gamma emitters beam loss or collection)
- Future studies to assess the activation/RIB implantation for beam intercepting device (waste studies...)

Shielding analysis

Monitoring system

Conclusion

Thank you for your attention

Thanks to the HIE-ISOLDE collaboration

A. Bernardes, R. Catherall, M. Fraser, J. Hast , Y. Kadi, S. Maridor, J. Mildenberger, I. Mondino, B. Nicquevert, D. Parchet, E. Siesling, M. Therasse, A. Trudel, G. Vandoni, W. Venturini , D. Voulot...

The research project has been supported by a Marie Curie Early Training Network Fellowship of the European Community's Seventh Programme under contract number (PITN-GA-2010-264330-CATHI)

< ロ ト < 同 ト < 三 ト < 三 ト