ISOLDE's RFQCB: Improvements and Upgrades

Carla Babcock

What is the RFQCB?

 ISOLDE's Radio-Frequency Quadrupole Cooler and Buncher (RFQCB) is a helium-filled Paul trap used to reduce the beam emittance and give it a time structure

What is the RFQCB?

C. Babcock

How does it work?

3 Components:

- Quadrupole electric field oscillating +V to -V to confine the ions
- Longitudinal electric field to pull the ions through the trap and bunch them at the end
- Helium gas for collisional cooling to reduce transverse motions and energy spread

Plus the injection and extraction electrodes

ISCOOL vs New RFQCB

ISCOOL is being modified

The new RFQCB is being built for the test stand

SCOOL

- New supports for alignment
- New He injection system to accurately measure flow
- Re-wiring to separate high and low voltages

- Pressure measurement
- Barriers for division into pressure regions
- Laser entry into RFQCB cylinder
 - Test stand

New RFOCB

Status of ISCOOL

Status of New RFQCB

Status of ISCOOL: Alignment

• Misalignment of the injection/extraction electrodes was measured to be 0.75mm

Status of ISCOOL: Alignment

 Solution: adjustable supports which allow movement in horizontal by 0.1mm and in vertical by 0.2mm

> Horizontal adjustments – using support piece and screws

Vertical adjustments through positions of two nuts

RFQCB cylinder

)	ISCOOL	New RFQCB
	New supports for	 Pressure measurement
	alignment	 Barriers for division into
	 New He injection system 	pressure regions
	to accurately measure	 Laser entry into
	TIOW	RFQCB cylinder
_	 Re-wiring to separate 	– Test stand
	high and low voltages	

Status of ISCOOL: Pressure

- He pressure inside cylinder is unknown, as is the flow rate of He into the cylinder
- A new mass-flow controlled meter will show how much He is flowing in, leading to more accurate ideas of the pressure

ISCOOL	New RFQCB
 New supports for alignment 	 Pressure measurement Barriers for division into
 New He injection system to accurately measure flow Re-wiring to separate bigh and low voltages 	 pressure regions Laser entry into RFQCB cylinder Test stand

Status of ISCOOL: Wiring

High voltage and low voltage connections have been wired together, resulting in damage – will be separated

 Wire organization will reduce damage to wires

•	ISCOOL	New RFQCB
	New supports for	 Pressure measurement
	aliyillieni	 Barriers for division into
	 New He injection system 	pressure regions
	to accurately measure	 Laser entry into
	flow	RFQCB cylinder
	Re-wiring to separate	- Test stand
	high and low voltages	

New RFQCB: Pressure

- Since pressure inside the cylinder is unknown, the new RFQCB will have:
 - Holes for pressure gauges
 - Regulated He flow
 - Extra conductances to minimize pressure outside the cylinder

Ion trajectories in the length of the RFQCB for different pressures

New RFQCB: Simulations

Confirmation that the ideal pressure is around 0.1 mbar

•	SCOOL	New RFQCB
	- New supports for	Pressure measurement
	alignment	 Barriers for division into
	New He injection system	pressure regions
\checkmark	to accurately measure	 Laser entry into
		RFQCB cylinder
	Re-wiring to separate	 Test stand
	right and low vollages	

New RFQCB: Barriers

Barrier pieces added to the new **RFQCB** will split the length into three parts, two low pressure and one high pressure

This will minimize the He escaping from the cylinder into the adjoining areas

C. Babcock

New RFQCB: Barrier Simulations

P1= 0.01mbar P2= 0.1mbar

P3= 0.01mbar

Simulation with barriers included at 100mm and 700mm

New RFQCB: Laser Pumping

- Working with COLLAPS to demonstrate the use of laser pumping for ions like Mn, for which it is difficult to perform spectroscopy from the ionic ground state due to laser restrictions
- This will hopefully be possible with the new alignment of ISCOOL

New RFQCB: Laser Entry

 To facilitate experiments involving incooler laser pumping of ions or 2+ ionization, the new cooler has laser entry ports

Two phases of the test stand

Conclusions

- New wiring will make the system more reliable
- New alignment will increase inj/ext efficiency
 and allow laser entry into the cooler
- New He injection system should make internal pressure more stable
- Vacuum system mods improve beam quality at inj/ext and allow us to test performance as a function of pressure
 - Mods i.e. laser ports will allow different experimental techniques to be studied
 - The test stand will show the feasibility of the setup for use in HIE-ISOLDE and it will give us the in-depth understanding of the RFQCB needed to make further improvements

New RFQCB

ISCOOL

This research project has been supported by a Marie Curie Initial Training Network Fellowship of the European Community's FP7 Programme under contract number (PITN-GA-2010-264330-CATHI).

Laser pumping with Mn ions

Extraction Acceptance

C. Babcock

Laser Entry Ports

Status of ISCOOL: Alignment

Microwave Studio was used to simulate the beam passing through the injection electrodes, to demonstrate the advantages of a realignment

