HIE-ISOLDE Workshop: The Technical Aspects 28 - 29 November 2013

Status of RAON: New RIB Facility in Korea

Yong-Kyun KIM (ykkim@ibs.re.kr) on behalf of RISP/IBS

Project History & Science Goal

- ISBB plan (2009.1)
- Preliminary Design Study (2009.3-2010.2)
- Conceptual Design study (2010.3-2011.2) : KoRIA
- Institute for Basic Science(IBS) established (2011.11)
- Rare Isotope Science Project(RISP) launched (2011.12)
- Baseline Design Summary (2012.6) : RAON
- Technical Design Report (2013.9)
- Highest priority research subjects
 - Nuclear reaction experiments important to nuclear-astrophysics : e.g. $^{15}O(\alpha,\gamma)^{19}Ne,\ ^{45}V(p,\gamma)^{46}Cr$
 - Nuclear structure of n-rich RI's near 80<A<160
 - Nuclear symmetry energy at sub-saturation density
 - Precision mass measurement & laser spectroscopy
 - Search for super-heavy elements: Z>119 (Z ~120)
- Important scientific applications
 - Material science : β -NMR, μ SR
 - Medical and bio-sciences
 - Nuclear data for next-generation NPP

Steps of RISP R&D

RAON : RISP Accelerator Complex

Rare Isotop

RAON Site

CRAON

Rare Isotope Science Project

RAON Design – Accelerator & Experimental Hall

Science Program with Beam Schedule

Roam schodulo	Science program	Exp_facility [#]	Beam s	pecies on exp. target [†]	Beam Intensity on exp. (pps)	
Deam senerune	Science program	Exp. facility	Day-1	Extra 2 years	(required/expected)	
2018.Q2 ~	Nuclear structure SHE search, rp-process, Spin physics	RS	⁵⁴ Cr	⁶⁴ Ni ^{26m} Al (²⁸ Si), ²⁵ Al (²⁸ Si), ⁴⁴ Ti (⁴² Ca), ^{14,15} O (¹⁵ N)	¹⁵ N, ⁵⁴ Cr ²⁸ Si, ⁴² Ca, ⁵⁰ Ti ²⁵ Al, ^{26m} Al, ⁴⁴ Ti, ^{14,15} O: (10 ⁵⁻⁶)	
	Pigmy dipole resonance	LAS-L	⁵⁸ Ni	⁴⁰ Ca, ¹¹² Sn	(10 ⁶⁻⁸ / <10 ⁹⁻¹⁰)	
from SCL1 (<18.5 MeV/u)	Biological effects	BM	^{12}C		(<10 ¹² />10 ¹²)	
(<18.5 Me v/u)	New materials, Polarized beam	β-NMR	⁸ Li by $(d, n)(n, \alpha)$ or $(p, 2p)$		⁸ Li (10 ⁸ / 10 ⁹)	
	Neutron cross section	NSF	n by (p,n) and (d,n)		n (< $10^{12}/10^{12}$)	
2019.Q4 ~ from ISOL (~5 keV/u)	Hyperfine structure, Mass measurement	Ion Trap LS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	¹³² Sn (<10 ⁵ / 10 ⁷) [‡] , ¹³⁰⁻¹³⁵ Sn (10 ³⁻⁶ / 10 ³⁻⁷)	
2019.Q4 ~ ISOL-SCL3 (<18.5 MeV/u)	r-process	RS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	132Sn (10 ⁶ / 10 ⁷)	
	Pigmy dipole resonance	LAS-L	¹³² Sn	⁵⁰⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn	65,66 Ni $(10^{6-8} / 10^{6-7})$	
	New materials	μSR	μ^+ by (p, πx)		$\mu^+ (10^8 / 10^9)$	
2019.Q4 ~ SCL1-SCL2	Biological effects	BM	¹² C		(<10 ¹² />10 ¹²)	
(~ hundreds MeV/u)	Baseline experiments, Spin physics	LAS-H	⁴⁰ Ca	⁵⁸ Ni, ¹¹² Sn, ¹³² Xe	(10 ⁶⁻⁸ / <10 ⁹⁻¹¹)	
2020.Q2 ~ SCL1-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹⁰⁰⁺ⁿ Sn	¹⁰⁰⁺ⁿ Sn	1285 (106-8 / 107)	
	Symmetry energy	LAS-H	¹³² Sn	⁴⁴⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn, ¹⁴⁴ Xe	132 Sn (10 ⁶⁻⁸ /10 ⁷) [‡]	
2020.Q4 ~ ISOL-SCL3-SCL2-IF(X) (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹³² Sn		132 Sn (10 ⁶⁻⁸ / 10 ⁷) [‡]	
	Symmetry energy	LAS-H	¹⁰⁶⁺ⁿ Sn	¹³³⁺ⁿ Xe	144 Xe (10 ⁶⁻⁸ / 10 ⁶)	
2021.Q2 ~ ISOL-SCL3-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS			⁷⁸ Ni (/<2)	

RS: Recoil Spectrometer, LAS: Large Acceptance Spectrometer, BM: Bio & Medical, LS: Laser Spectrometer, NSF: Neutron Science Facility, ZDS: Zero Degree Spectrometer, HRS: High Resolution Spectrometer † Beam species : SI (black), RI (Blue) ‡ Beam purity >90 % for ISOL, 9% for IF

기초과학연구원

—

Layout of ISOL Facility

Institute for Basic Sc

ISOL Target (10 kW UCx) Design

ISOL target optimization

- high fission rate & release efficiency
- Y_{ISOL} = Φ_P · σ_f · N_{target} · ε_{release} · ε_{is} · ε_{cooler} · ε_{ms} · ε_{CB} · ε_{aq} · ε_{acc}
 uniform high-temperature (2000~2100°C) & low thermal stress
- solution: low-density (2.5~5 g/cm³), porous, thin multi-disk UC_x target
 - 50 mmΦ, 1.3 mmt, 19 disks, 2.5 g/cm³, 101 g of U (5.14 g/cm²) \geq

Design of Pre-separator

S 기초과학연구

RFQ-Cooler

RAON

• Objectives of the device

• Enhancement of the ion beam quality for HRMS by reducing the energy spread and the emittance.

• Target specifications

- emittance $<3\pi$ mm mrad @ 20 keV
- energy spread ($\Delta E/E$) $\leq 5 \times 10^{-5}$
- transmission efficiency > 60 % (DC mode)
- acceptable beam current: up to 1 μA

• **RFQ-Cooler simulation**

- Injection optics simulation for efficient injection of ions into RFQ
- Hard sphere collision model for the buffer gas cooling process inside the RFQ region
- Calculation of transmission efficiency, energy spread, emittance

• DC mode operation

Transmission eff. with the pressure outside RFQ

• Bunch mode operation

HRMS (High-Resolution Mass Separator)

Parameters

- QQSQ-DMD-QSQQ symmetry
- KE < 50 keV ($\Delta E/E=10^{-6}$)
- acceptance : 3π mm mrad (input ~ 2π mm mrad)
- total length ~11 m
- dispersion D_m : 34 cm/%

EQ EQ

EQ EQ

ES EQ

EM (48 rod multi-pole,

R=20 cm)

ES EQ

• $R_w > 10,000$

RF-Cooler

Charge Breeder

S 기초과학연구

Comparison of performances of the ECR and EBIS charge breeder

	ECR	TRAP / EBIS
Efficiency	1-18%	4-30%
Ion capacity / Low limit	high (1e12 ions/s) / 10 nA	low (1e9 ions/s) / fA
A/q	high (4-8)	low (2-4)
Acceptance / Emittance	>50 π / <80 π	3~10 π / 15~20 π
A	injection difficult for A<20	no real limitation
Breeding time	100~300 ms	13~500 ms (depending on A)
Background	support gas and rest gas in between peaks 10 pA ~ 10 nA	rest gas peaks 10~100 pA in between peaks <0.1 pA (not detectable)
Energy spread (eV/q) (1σ)	1~10 (up to 0.5%)	~50
Injection / Extraction	CW or pulsed / CW or afterglow	pulsed (a few tens µs) / pulsed (10~50 µs)
System complexity / Maintenance	simple / good	high / bad (cathode life)

CAON

A/q Separator ($R_{A/q} \sim 300$)

- Angular acceptance : ±50 mrad
- Energy acceptance : ±0.25 %
- Momentum resolving power at F1 ~930 (1st order)
- Mass resolving power at F2 ~460 (~300 for 5th order)
- Electric bender : ρ 1.4 m, gap 14 cm
- Magnetic dipole : ρ 0.9 m, gap 7 cm
- Total length (Fo-F2) \sim 9.4 m

Institute for Basic Sci

• Transmission: ~84 % for ${}^{132}Sn$

Ion optics calculation (5th order)

RI Yield estimation

p + UCx → n-rich isotopes (80 < A < 160) by fission reaction
Fission rate (10 kW) : 1.6x10¹³ f/s

Production yield (10 kW ISOL target)

Expected lab. intensities (10 kW target)

Half-life Lab. Yield (pps) Science Isotope 2.28 d 4x10⁵ ⁶⁶Ni pigmy ⁶⁸Ni 21 s 5x10⁶ symmetry ¹³²Sn 39.7 s r-process, pigmy $1x10^{7}$ Fine structure, ¹³⁰⁻¹³⁵Sn $10^{4} \sim 10^{8}$ 0.5 s ~ 3.7 min precision mass ¹⁴⁰Xe 13.6 s Symmetry 3x10⁸ ¹⁴⁴Xe 0.4 s Symmetry 1x10⁵

ISOL Target Preparation

Processing route for carbide production

Materials

- La₂O₃ (99.99% powders, Sigma Aldrich)
- Graphite (<45 µm, Sigma Aldrich)

Powder & disk preparation

- 1. Grinding & mixing of La_2O_3 & C powders in a planetrav Ball Mill
- 2. Addition of (1.5~2.1) wt.% of phenolic resin (dissolved in acetone) as a binder & mixing
- 3. Disk target (13 mm Φ , 1.3 mmt) formation by cold pressing of powers (~750 Mpa, 45~60 min)

Two-step thermal treatment

- 1. Promotion of the carbothermal reaction (2°C/min up to 1250°C, 24 h at 1250°C) under vacuum $(10^{-7} \sim 10^{-5} \text{ mbar})$
- * $La_2O_3 + 11C \rightarrow 2LaC_2 + 4C + 3CO$ * monitoring of the reaction by RGA & vac. gauge
- 2. Sintering the carburized powders (2°C/min up to 1600°C, 4 h at 1600°C)
- 3. Slow cooling at a rate of 2°C/min

Characterization

- 1. Grain size, density & open porosity, stoichiometry (SEM-EDX, XRD, He-pycnometer)
- 2. (high-temperature) emissivity & conductivity (dualfrequency pyrometer)

210 ton Press

Glove Box

High-temp. (2100°C) high-vacuum Furnace

Pressed disk (13 mm Φ)

Planetary Ball Mill

ISOL TIS/Front-End Test Facility (off-line)

기초과학연구원 Institute for Basic Science

Superconducting ECR Ion Source

- SC ECR IS to generate highly charged high intensity ions
- Prototype saddle type sextupole tested (2013.03-10)

RFQ design parameters

16S 기초과학연구원 Institute for Basic Science

		81.25MHz+q=0.14+Ws=0.0125+Wg=0.05+A=0.326456258281+amu=1+1=0.4mA 1.00 x (cm) vs cell number
PARAMETER	VALUE	
Beam Properties:		-1.00 0 25 50 75 100 125 150 175 200 225 250
Frequency	81.250 MHz	1.00 y (cm) vs cell number BXLt OI CELL
Particle	H ⁺¹ to U ₂₃₈ ⁺³³	
Input Energy	10 keV/u	50 -1.00 0 25 50 75 100 125 150 175 200 225 250
Input Current	0.4 mA	180 phi-phis (deg) vs cell number
Input Emittance: transverse (rms, norm)	0.012 .cm. mrad	• • • • • • • • • • • • • • • • • • •
Output Energy	0.507 MeV/u	
Output Current for 0.4mA in.	~0.39 mA	.02 M-Ms (NeV) vs cell number
Output Emittance: transverse (rms, norm)	0.0125 .cm. mrad	.01
longitudinal (rms)	~26 keV/u-Degree	01
Transmission	~98 %	² 25 50 75 100 125 150 175 200 225 250 81.25MHz+q=0.14+Ws=0.0125+Wg=0.05+A=0.326456258281+amu=1+i=0.4mA
Structures and RF:		.050
Peak surface Field	1.70 Kilpatrick	.025
Structure Power (for U ₂₃₈ +33)	92.4 kW	0.
Beam Power (for 0.2mÅ each $U_{238}^{+33&+34}$)	1.44 kW	
Total Power	94 kW	025
Duty Factor	100%	050 Xp vs. X 050 1 ,000500 0500 1.000500 0500 1.000500 0500 1.000500 1.000500 1.000500 1.000500 1.000500 1.000500 0
RF Feed	1 Drive loops	1.000
Mechanical:		.500
Length	4.94 meter	0. 0. · · · ·
Operating Temperature	TBD Degree C	
	J	010
		-1.000 [X vs. X] - 0.20 [E-Es vs. Phi-Phis] - 0.20 [E-Es vs. Phi-Phis] - 0.000 -1.000500 0500 1.000 -60.0 -30.0 0. 30.0 60.0 Es = 0.507 Phs = 9.714

RFQ Engineering Design

Institute for Basic Scie

Superconducting cavity

QWR

165 기초과학연구원 Institute for Basic Science

Parameters	Unit	QWR	HWR	SSR1	SSR2
β _g	-	0.047	0.12	0.30	0.51
F	MHz	81.25	162.5	325	325
Aperture	mm	40	40	50	50
QR _s	Ohm	21	42	94	112
R/Q	Ohm	468	310	246	296
V _{acc}	MV	1.1	1.5	2.4	4.1
E _{peak} /E _{acc}		5.6	5.0	4.4	3.9
B _{peak} / E _{acc}		9.3	8.2	6.3	7.2
$Q_{calc}/10^9$	-	2.1	4.1	9.2	10.5
Temp.	K	2	2	2	2

(Ep = 35MV/m)

Cavity Prototyping is under way

16S 기초과학연구원 Institute for Basic Science

	하모	진공부피	IBS	IBS		SFA
	87	연관유무	REF. DIM	소숫점첫패자리	<u> </u>	SFA 제작(금형) 도면 DIM
	Beam pass in dia(Ø)	0	50	5	0.15	49.7
	Beam pass out dia(Ø)	X	55.6		0.15	55.7
0	Beam pass 두께	X	2.8		0.15	3
9	Beam pass 내경쪽 R	0	6		0.15	6.15
	Beam pass 외경쪽 R	X	3.8		0.15	3.15
	Beam pass welding dia(Ø)	X	67.368		0.15	6
	Spoke slot width(beam length)	0	87.265	87.	0.15	87.5
	Spoke slot length	0	160	16	0.15	160.3
	Spoke slot center	0	72.735	72.		72.8
	Spoke slot height	0	128.8	128.		128.8
1	Spoke pot height	0	220.75	220.		220.8
	Spoke pot out dia(Ø)	0	256.625	256.	0.15	256.9
	Spoke pot R	0	8		0.15	8.3
	Spoke pot R(외경)	0	8			11.3
	Spoke pot welding dia(Ø)	X	264.623	273.	0.15	280
	Spoke beam pass welding dia(Ø)	x			0.15	6
	챔버내경(Ø)	0	545.62	545.	0.15	545.3
	챔버외경(Ø)	x	551.22		0.15	551.3
	햄버두께	X	272.81		0.15	3
	챔버폭	0	414.946	414.	0.15	414.9
	물버 Spoke pot welding dia(Ø)	x	264.623		0.15	286
	햄버 진공포트 welding dia(Ø)	x			0.15	107
	진공포트 내경(Ø)	0	76.9	76.	0.15	76.6
	진공포트 외경(Ø)	x	(82.5)	82.	0.15	82.6
	진공포트 두께	х	(2.8)	2.	0.15	
	진공포트 내경쪽 R	0	12.2	12	0.15	12.35
	진공포트 외경쪽 R	0	(15)	14.		9.35
	진공포트 welding dia(Ø)	X	(106.693)	101	0.15	107
	진공포트 Lenath	0	345	34		345
	빔포트 내경(Ø)	0	50	5	0.15	49.7
	빔포트 외경(Ø)	X	(70)		0.15	55.7
	빔포트 두께	x	10			
(12)	빔포트 내경쪽 R	0	6		0.15	6.15
ST.	빔포트 외경쪽 R	X	3.8		0.15	3.15
-	비포트 welding dia(Ø)	X			0.15	6
	빔포트 Length	0	78.001	7		78
	STIFFNESS RING 1 내경(Ø)	Х	384	38	0.15	383.7
	STIFFNESS RING 1 외경(Ø)	x	(396)		0.15	389.7
	STIFFNESS RING 1 두께	X	6		0.15	
$\left(\right)$	STIFFNESS RING 1 K	Х	110	11	0.15	110.15
\square	STIFFNESS RING 2 내경(Ø)	X	424	42	0.15	423.7
	STIFFNESS RING 2 외경(Ø)	X	(436)		0.15	429.7
	STIFFNESS RING 2 두께	X	6		0.15	
	STIFFNESS RING 2 S	X	110	11	0.15	110.15
	TOTAL LENGTH	X	540.731		0.15	541

Charge Stripper Section

Layout of the IF Separator

Beam optics of main separator

Large acceptance mode

Angular acceptance 90 mrad (h) 70 mrad (v) Momentum acceptance ~8 % Resolving power 2.7 cm/% at F6 2.7 cm/% at F8

High resolution mode

Angular acceptance 50 mrad (h) 50 mrad (v) Momentum acceptance ~6 % Resolving power 2.65 cm/% at F6 3.65 cm/% at F7 2.65 cm/% at F8

Experimental Facilities at RAON

16S 기초과학연구원 Institute for Basic Science

Field	Facility	Exp. hall	Characteristics	Remark
Pure science	Recoil spectrometer – KOBRA	Low E	High resolution, Large acceptance function, RIBs production with in-flight method	Mass resolution; ~ 200 Large acceptance; ~ 80 msr
	Large acceptance Spectrometer – LAMPS(L&H)	Low & High E (I)	High efficiency for charged particle, n, and $\boldsymbol{\gamma}$	TPC ; 3π sr, Neutron wall, Si-CsI array, dipole spectrometer
	High resolution Spectrometer	High E (I)	High resolution, Precise scattering measurement to the focal plan, Rotatable spectrometer	Momentum resolution ; 1.5x10 ⁴
	Zero-degree Spectrometer	High E (I)	Charge and mass separation, Good mass resolution	Momentum resolution ; 1200~ 4100
	High precession mass measurement system	Ultra low E	Penning trap, Multi-reflection Time of flight	Mass resolution ; 10 ⁻⁵ ~ 10 ⁻⁸
	Collinear laser Spectroscopy	Ultra low E	High Resolution Laser Spectroscopy System	Spectral resolution ; ≤ 100 MHz
Applied science	β-NMR/μ-SR	Low / High E (II)	High intensity ⁸ Li & muon production	⁸ Li & muon > 10 ⁸ pps
	Bio-medical facility	Low & High E (II)	Irradiation system for stable & radio ion beam	Uniformity ; < 5%
	Neutron science Facility	Low E	Fast neutron generation & measurement system of fission cross section	Uncertainty ; < a few %

Collaboration

Summary

- RISP is a challenging project in this field, and as a newcomer we are practically crossing the technical design stage.
- The R&D of ISOL target chemistry is on-going from July this year, and ion sources are in the making one by one.
- The off-line test facility of the TIS front-end system is at the final engineering design stage.
- Extensive & active collaboration with advanced foreign institutes seems to be essential, in particular, for the successful development of RF-cooler, HRMS, charge breeder and A/q separator.
- The first exotic beam from ISOL at RISP is expected hopefully in early 2019.

Thank you for attention !

Acknowledgements

H.J. Woo, B.H. Kang, K. Tshoo, C.S. Seo, W. Hwang, Y.-H. Park, J.W. Yoon, D.Y. Jang, G.D. Kim, Y.K. Kwon