

HIE-ISOLDE Workshop : The Technical Aspects November, 28th 2013

Latest developments of the HIE-ISOLDE Alignment and Monitoring System

G. Kautzmann, J-C. Gayde, Y. Kadi, F. Klumb, S. Rokopanos, CERN, Geneva, Switzerland
J. Bensinger, K. Hashemi, Brandeis University, Waltham, USA
M. Šulc, Technical University of Liberec, Liberec, Czech Republic

Alignment specifications General

- HIE-ISOLDE : Upgrade of the existing REX-ISOLDE
- Alignment and monitoring of the Cavities and Solenoids in the Cryomodules w.r.to a common nominal beam line (NBL) along the Linac
- Permanent and Modular system
- Precision asked along radial and height axis at 1 sigma level :
 - > 300 microns for the Cavities
 - > 150 microns for the Solenoids

Alignment specifications Alignment System

CONCEPT

- Creation of a closed geometrical network continuously measured
- Observation and position reconstruction of Cavities and Solenoid in this Network

SYSTEM

- RF cavities and solenoid equipped with targets
- Interface Atmosphere / High Vacuum \rightarrow Precise viewports
- BCAM cameras fixed to inter-module metrological tables

External Lines=> Position and orientation of metrological tables and BCAMsInternal Lines=> Position of the targets inside the tank

Alignment specifications Alignment System

Cryomodule assembly in ISO Class 5 clean room

Cavity and solenoid isostatic support: Sphere – V-shape

- Precise adjustment
- Solenoid adjustment allowed in operational conditions
- Used as Target support

5

FR

Developed on 1999 by Brandeis University for ATLAS Muon alignment

OSI (Open Source Instruments)

http://alignment.hep.brandeis.edu/ http://www.opensourceinstruments.com/

Original BCAM

 \rightarrow HBCAM Camera focal length: 72 mm → 49 mm – 50 mm Sensor: 336 x 243 pixels 10 micr \rightarrow 659p x 494p, 7.4 microns Field of view: 40 mrad x 30 mrad $\rightarrow \sim 100 \times 70$ mrad Sources: Laser Diodes 650 nm + Calibration of their power + Additional synchronized illumination system

Double sided model \rightarrow Chain of BCAMs

Resolution: 5 micro radians constructor (OSI) \rightarrow Same range

Accuracy of 50 micro radians to absolute \rightarrow Same range

Cable length BCAM/Driver > 60 m + Connection on the side

Delivered calibrated (focal length, position diodes, geometric relationship with plate support)

- 7

Targets Overview

Constraints → HIGH VACUUM - CRYO CONDITIONS - SIZE

Studied Target Types

- Silica Silica optical fiber end
 - feed-through needed, one-sided target
 - + easy light level control, OK with cold and vacuum (tested)

> Silica Silica optical fiber ended by a ceramic ball

- feed-through needed, connection fiber/ball
- + visible from all positions, good diffuser
- Retro-reflective targets
 - illumination needed, all targets in one shot
 - + double-sided, passive target, no feed-through

High index glass ball:

- Developed by OHARA Inc., Kanagawa, Japan
- Material : S-LAH79
- Off the shelf
- Available from diameter 1mm to 10mm
- Diameter Tolerance (µm) : 0/-3
- Sphericity (µm): 2
- Refracting index of 1.993 for HBCAM Lasers (650nm)

HIE-ISOLDE Glass ball theory

Study carried out by M. Šulc, Technical University of Liberec

$$\gamma = 4 \cdot \arcsin\left(\frac{1}{n}\frac{r}{R}\right) - 2 \cdot \arcsin\left(\frac{r}{R}\right)$$

HIE-ISOLDE Glass ball theory

Fit well to the theory

Test done by Mario Hermann (TE/VSC)

time t in s -->

Outgassing at background level. Test done with an equivalent of 20 Ø4mm balls or 80 Ø2 mm balls.

Targets High-Index Glass

High Index glass balls based TARGETS:

- Based on high index glass balls (Ø2 or 4mm)→ Retro reflective effect
- Double Sided
- Flashed by HBCAM Lasers
- Possibility of multi-balls targets
- Glass balls: Vacuum compatible
- Good geometrical results

ALIGNMENT SYSTEM MAINLY BASED ON WELL KNOWN ELEMENTS

BCAMs

- Proved and used devices
- New HBCAM inside the specifications

TARGETS

- All alternatives seem to work well (Fibers Ceramic balls Retro targets)
- Passive high index glass ball target looks promising \rightarrow "Final" validation test on-going

VIEWPORTS

- Studied and fitting well to the theory → Easy BCAM observation corrections
- Be careful in the choice of the viewport \rightarrow High optical quality needed

SOFTWARE:

- Under development
- Simulation of metrol. table position reconstruction \rightarrow ~20 microns at 1 sigma level

GOAL: BE READY FOR THE VACUUM AND CRYOGENIC TESTS OF 1st CRYOMODULE

HIE-ISOLDE

Alignment and Monitoring System

Acknowledgement:

This research project has been supported by a Marie Curie Early Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2010-264330-CATHI).

Thanks for your attention

Targets Double-sided

Three types of "double sided" targets considered

But Active targets

HIE-ISOLDE Workshop: The Technical Aspects – Alignment and Monitoring System – November 28th 2013

Viewports

Atmosphere / Vacuum interface

- Parallel plates window
- Viewports at CM ends (off the shelf)

Study of viewport effects on BCAM observations

- Viewport 6.55 mm thick
- 3 opt. quality classes tested
- Wedge angle
 - 10 micro-rad
- Parallel plate effect
 - 1 Deg \rightarrow 40 microns
 - Match the theory → correction by software
- Deformation due to vacuum
 - Less than 0.015 deg of angular deviation

Wedge angle

Window	Given wedge angle (microrad) from window's technical data	Wedge angle observed (microrad)	Influence on target at 1m (micr)	Influence on target at 2m (micr)
А	25	5	2.5	5
В	50	10	5	10
С	500	300	150	300

10 microrad wedge angle acceptable

Parallel Plate Effect

- Incident angle change of 1gon (0.9deg) → 37 microns radial object "displacement"
- Match the theory by a few microns → Easy observation correction by software
- Adjustment of the Window within less than 1 degree → Ease the correction

Vacuum deformation

- Less than 7 microns deformation at the center
- Less than 0.015 degree of angular deviation
- Deformation measurements Liberec University (CZ):
 - Results match the calculated deformations by a few microns
 - ✓ Same deformation on both side → Parallelism kept

Software Coordinate Systems

Each element has a specific coordinate system atached

Hierarchical scheme of coordinates systems :

- Topmost: For each table: For each BCAM:
- HIE system Table system
- Mount system CDD System
- \rightarrow Link to the NBL
- Table system \rightarrow Link between the BCAMs
 - \rightarrow Calibration parameters
 - \rightarrow Observations

Software Adjusted Parameters

Translations and rotations for each table need to be estimated: 6 parameters per table in the setup

Relations between mount systems on the same table are fixed → Tables considered as a floating rigid body

$\Sigma_0^2 = 0.0117$	σty [µm]	σtz [µm]	σrx [µrad]	σry [µrad]	σrz [µrad]
0	0.49	0.53	1.54	3.51	1.2
1	9.19	10.72	34.5	4.16	3.78
2	12.72	15.38	38.2	3.59	3.39
3	13.67	16.87	38.02	2.82	2.69
4	12.73	15.6	38.27	3.56	3.39
5	9.21	11.01	34.54	4.18	3.78
6	0.9	1.07	3.18	3.93	1.23

Overlapping improves the results by a factor 2 Still some error budget for the reconstruction of the targets

HIE-ISOLDE Alignment and Monitoring System

