

Frequency tuning of the HIE-ISOLDE high-β quarter-wave resonator

P. Zhang*, A. D'Elia and W. Venturini (BE-RF, CERN)

HIE-ISOLDE Workshop, CERN, Nov 28th, 2013

*This work received support from a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI.

Outline

- Brief introduction to the cavity
- Why the frequency need to be tuned?
- How the frequency is tuned?
- Summary

High-β quarter wave resonator

|E| field

|H| field

All plots are normalized to 1J of stored energy

Decouple the frequency tuning

Δf due to mechanical tolerance

Type of error	Δf (kHz/mm)	
Inner conductor length	160	
Cavity diameter	65	
Nose length	50	

- Δf due to mechanical tolerance of 0.1mm
 28 kHz in worst case
- Frequency sensitivity of changing tip gap
 - 18kHz/mm (@ tip gap 77.5mm)
- Use **tip gap** as a free parameter to **compensate** the mechanical tolerance

A tuning method is required.

The target frequency

Frequency vs. temperature & humidity

	Δ	Sunday	Δf (calculation)
Temperature	- 1.2K	9:00 - 11:00	+2.4 kHz
Humidity	- 5%	11:00 - 15:00	+0.5 kHz

1 hour delay observed for the frequency to respond the temperature changes

Pei Zhang

HIE-ISOLDE Workshop: The Technical Aspects

The tuning of QP2.1

Trimming	Measured Freq.	Ideal Freq.	Δf	Tip gap
0 mm	101.0059 MHz	100.9953 MHz	+10.6 kHz	87.5 mm
10 mm	100.8544 MHz			77.5 mm
10.3 mm	100.849 MHz			77.3 mm

$\Delta f = 100.8544 - 100.849 = 5.4 \text{kHz}$

77.9 mm

0.3mm * 18kHz/mm = **5.4kHz** (@tg = 77.5mm, the sensitivity is 18kHz/mm)

In summary, if we cut the cavity by **exactly 10.3mm**, the frequency measured will be less than **1kHz** away from the target.

The tuning of QP2.1 is complete.

CERN, Nov 28th, 2013

Page 8

Error estimation

Initial tip gap error	Suggested trimming error	Frequency error
1 mm	0.7 mm	12 kHz
0.1 mm	0.1 mm	~2 kHz

Can be well covered by tuning system

Pei Zhang

HIE-ISOLDE Workshop: The Technical Aspects

CERN, Nov 28th, 2013

Page 9

Decouple the frequency tuning

The tuning system

Original tuning plate

	Plate type	Coarse range	Sensitivity
	Original	220 kHz	11 kHz/mm
	New (R=100mm)	37 kHz	7.4 kHz/mm

The new simplified plate drastically reduced the production cost.

Pei Zhang

The first tuning plate prototype

New simplified plate

First prototype

- Measurement achieved:
 - Coarse range: 37kHz
 - Tuning sensitivity: 0.3Hz/step
- Development is ongoing

Data courtesy D. Valuch

CERN, Nov 28th, 2013 Page 12

Summary

- The frequency tuning of QWR has been decoupled
 - **pre-tuning** to recover mechanical tolerance
 - tuning system to compensate cool-down variability, Lorentz detuning and microphonics
- The pre-tuning of the first two QP cavities completed
- The tuning system has been simplified
 - the first prototype tested and fulfilled specifications

Reference

[1] A. D'Elia, "Frequency scaling from ...", HIE-ISOLDE-PROJECT-Note-0007, 2010.

- [2] A. D'Elia, "Coarse tuning range of ...", HIE-ISOLDE project note, to be submitted.
- [3] P. Zhang *et al.*, "The tuning system for ...", SRF2013, THP084, 2013.

[4] P. Zhang *et al.*, "Frequency pre-tuning of ...", HIE-ISOLDE project note, to be submitted.