Advances in AIMI “Second Generation”
MgB, Wires, n-values, and Coils

M.D. Sumption, G Li, Y Yang,
M. Susner, C. Myers, C. Kovacs,
E.W. Collings

Center for Superconducting and
Magnetic Materials, MSE, The Ohio
State University

Funded by a the state of M. A. Rindfleisch, M. J. Tomsic, C. J.

?Q.‘E” i s Thong, D. Doll, HyperTech Research

Department of Materials __
Science and Engineering




Outline

1. Transport Results for Multifilamentary
Advanced Internal Magnesium
Infiltration (AIMI) (2G) strands

2. Large increases in n-values for PIT
strands at 4 K and as a function of B

and T

3. Preliminary results for Wire-In-
channel NZP and MRI-like Coil Winding
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PIT Conductors have porosity
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But even in the
“solid” regions,
oxides|imit current!

BF TEM MgB, wire
X-section
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But we could get much higher
layer J, if we prevented this
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Critical Current Density, J., Alem’

What ]S the effeCt Use a modified Eisterer

model

of Anisotropy? i
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Critical Current Density, J,, Alem’

How about the influence of Porosity?
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SO

PIT MgB2 is limited by the effects of nanoscale non-optimum
connectivity, in addition to the larger scale porosity

Thus, when MgB2 is densified, we get a factor of 10, rather
than a factor of 2

Higher field drop off is sometimes entirely attributed to
anisotropy, but about half comes from nanoscale connectivity

Application of percolation theory to MgB, wires of different
designs isolated the effects of porosity and crystalline
anisotropy.

Porosity was seen to be just as important a factor as y

- In particular, at 10 T, 60% of supercurrent degradation
comes from anisotropy, 40% from porosity

- Can nearly eliminate the latter, reduce the former through
doping
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Motivation

(Mg-RLI or IMD): initiated by Giunchi et
dense, but low Jc because of powder type
aetal. (NIMS) —their B, much higher Jcs
-HTR — use of very fine B, and C-doping led

MgB,
/ IMD PIT

= high layer J..  10x10°A/lcm?at4.2K, 10T (& 2 rEHPTLo)
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Measurement of J. and n for monofilaments

F,, max reaches 60 GN/m?3- it’s like Nb,Sn

p,max
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Motivation - Modification

(Mg-RLI or IMD): initiated by Giunchi et
ense, but low Jc because of powder type
etal. (NIMS) —ther B, much higher Jcs
-HTR — use of very fine B, and C-doping led

| — making this of more scientific than
Imize conversion, and thus | c?

IMD PIT

e

Nb Monedl

low MgB, fill factor so low
1A

| ZLi T, 2012
= high layer J.. 1.0x105A/cm?at4.2K,10T (G Z Li etal, SUST, 2012)
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A comparison to best-of Results

Second generation MgB, wires: both improved
critical current density J. and engineering J..
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Samples

Table 1 Monocorewire Diameter and HT Conditions

Sample No. Diameter, mm HT time at
675°C, h
Al 0.83 0.5
A2 0.83 1
A3 0.83 8
Bl 0.55 0.5
B2 0.55 i
B3 29 4

= 2% C doped plasma synthesized B (40 nm, Special Materials Inc.).
» Temperature: 675 °C, based on experience with PIT wires.
= Fabricated and heat treated at Hyper Tech Research, Inc.

= Transport J. measurement at 4.2 K, upto 12 T.

SEM & EDS: Quanta 200 with EDAX EDS system, FEI Sirion SEM.
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A-series Infiltration-Processed Strands

A3: 8h

(©) Lol M8,

AL 05h

Mg l MgB,

monel monel

Y % \
region I I reglon region

Brich Brich
B-rich layer MgB, layer
= MgB, circular layers are formed. outer layer inner layer
= MgB, composition and structure LEHEE o WigrBagade
identified.
= B is not fully reacted even after 8 h
at 675 °C.
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MgE b3 packing  jqyer — Microscopy Observation
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B-series Infiltration-Processed Strands

B1:0.5h AxBA] ]

MzB, € Mg
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= MgB, circular layers are formed but the Mg rod is off-centered.
= B is fully reacted after 4 h heat treatment at 675 "C.

= MgB, area and layer thickness are listed in table 2.
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Comparison of A- & B-series Strands

Table 2: MgB, Layer Thickness, Areasand Corresponding Fill Factors

HT time at MgB, layer MgB, area, MgB, fill MgB, + B fill

Sample No. 675° C,h thicﬂnéss),/pm um?2 factor, %* Factor, %**
Al 0.5 (o 3k) 26900 4.4 21.1
A2 1 10510 38200 6.3 19.7
A3 8 ool 44800 o 19.1
Bl 0.5 0~140 25100 10.1 19.6
B2 1 0~49 28000 gt 19.7

B3 4 590 46700 18.8 18.8

* Area fraction of MgB, in the overall transverse cross section of the wire
2

_—

** Area fraction of MgB, plus unreacted B powder after heat treatment

= MgB, layer thickness increases as HT time increases.
= MgB, fill factor increases as HT time increases.

e j
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Layer J_. & Engineering J, layer 3o =1c/ MgB, area

J.=I./wholearea

layer J. Engineering J,

B3: 1.67x10*
e

Alcm?at 10T

All wiresquench
whenB <9T.

= layer J..
A-series HT timef, J.1; A3: 1.04x105A/cm? at 10T
B-series HT timef, J.{;B1: 1.07x105A/cm? at 10 T
= Engineering J..
B-series isbetter than A-series because of its high M gB, fill factor.
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So, layer J_is 10 x for 2G (and IMD), but
How do the J, results compare to PIT?

We have to correct for doping
level and special processing

A head to head comparison is
shown by the red filled circles
and the gray diamonds - about
a factor of 5in J,!

Pressure processing (sequential
pressing, Flukiger/Hossain) on
the same PIT wires is also
shown (open circles)

We have found 3-4% C can
given high Js in PIT wires, now
implementing in IMD
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MgB, Layer Growth Mechanism

= Step |: Mélting of theMgrod

= Step I1: Liquid Mg infiltration and reaction with B

Mg + 2B > MgB,

B particles volume expansion are ~ 90% considering: (a) Vg: 4.59 cm3/mol
and (b) Vyer: 17.46 cm¥mol

A dense MgB, circular layer is formed.
= Step I11: Mg atomic diffusion through the dense M gB,, layer

Atomic GB diffusion: Quite slower process than liquid Mg infiltration in step II.
Grain growth during long HT time, resulting in reduced layer J..
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MgB, Layer Growth Mechani
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Principle to Design a Well-Performed Wire

Directions to obtain a good
conductor:

J. improvement.
°G » doping
" pressing
» ball milling

= infiltration/diffusion method

MgB, fill factor.

= smaller diameter wire

= multifilamentary wire

‘]e
ayer J. = .
(SJ Ye et al, Physica C, 2011; K Togano et al, SUST, 2009; G Z Li et al, SUST, 2012; Y Yang et al, MgB, fill factor
IEEE Trans Appl Supercond, 2012; M Hossain et al, SUST, 2009; M Herrmann et al, APL, 2007; D L
Wang et al, SUST, 2012)
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Further Explorations I: layer J. enhancement

= Carbon doping level

3% and 4% C doped diffusion processed
strands, heat treated at 675 C, 4H.

Best layer J, for 3% C doped diffusion
processed strands: 1.57x10° A/lcm? at 4.2 K,

10 T.
@ B1
A B2

V B3
B T F B e ANt TR T V 3% C, Infiltrated Wire
V 4% C, Infiltrated Wire
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Further Exploraﬁons I1: Multifilamentary 2G Wires

= 2G MgB, multifilamentary long strands (ITER barrel). 3

Layer J. and J, higher than typical multifilamentary PIT barrels, but
lower than our best 2G monocore short wires.
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N-v

alues in PIT MgB,

e Improvements in 4 K values
e Improvements in n values as a function

of B and |

-

Department of Materials __
Science and Engineering



Strand Types

# Mono Multi | Central powder dia % HT
Strand # Mono | Barrier | sheath | sheath fil(s) material (mm) | powder | (°C/min)
3139 24 Nb - Monel Cu MgB2 2%C+ 0.83 11.7 675/ 60
3139 24 Nb - Monel Cu MgB2 2%C+ 0.83 11.7 700/ 60
3124 30 Nb - Monel Cu MgB2 2%C  0.83 23.3 675/ 60
3124 30 Nb - Monel Cu MgB2 2%C  0.83 23.3 700/ 60
Early Barrel Study
3139-51307 24 Nb - Monel Cu MgB2 2%C¥ 0.83 11.7 675/ 60
3124-S1300 30 Nb - Monel Cu MgB2 2%C  0.92 23.3 675/ 60
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Critical Current Density, J_, A/lcm?
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24 Filament (3139-51307)
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Regimes of n-value

Barrel:
17K N > 30
10 K 4K 7T
15 K
20K 10K 6T
5K 15K 5T
WK
20K 3T
25K 1T

P2 R T A N
0 ~ 10 15
Magnetic Field, g . T
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WIC and Coil Test
e WIC Test
e Coil Manufacture and Test
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T(K)

WIC NZP and Quench (gas cool)
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MgB2 Coil, 100 m of WIC MgB2 Conductor

HTR: MgB2
strand, Wire-in-
channel Conductor

HTR: Coil wound,
coil epoxy
Impregnated by
HTR

OSU: Call
Instrumented with
30+ voltage taps,
18+ thermocouples,
, other sensors

OSU: Cool down
and Test
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Inside of OSU Dewar

OoSuU
Constructed
YBCO Busbhar

Department of Materials __
Science and Engineering



Initial Coil Cool-down
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Tc transition for coil

Tc=39K
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Coil T
Instrumentation
/Result

Axis of symmetry $ -

@ ¢ Ruthenium oxide sensor,

© Thermocouple

O Coil winding

top of coil former

Former

winding

Oo ¢T10, Top of coil

Cui|=bo

Oo ¢ T7, Center of coil
Oo ¢ T4, Between center of coil and bottom of coil

Oo ¢ T2, Bottom of coil

Cu Ring
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Summary

Percolation-based models were used to compare PIT and IMD MgB, wires, and it
was found that previous treatments which attributed all high field J. loss to
anisotropy were overly pessimistic, with about 40% (or a large reduction) due to
porosity

This led to an impetus to push IMD from “scientifically interesting” (high J. (10 X
PIT), low J,) to practical conductors

These considerations led to advanced, “2G”, MgB,, wires were fabricated by
incorporating (1) a Mg diffusion method, (2)fine B powder, (3) C-doping at the
powder level, (4) Mg/B ratio, and (5) strand geometry modifications.

2G MgB, wires had dense MgB, layer structures, enabling best layer J. of 1.0x10°
Alcm? at 4.2 Kand 10 T (an increase by a factor of 10!)

The best J, of sample B3 achieves 15.7 kA/cm?, in increase of about 5 from the
same chemistry PIT conductors, and a factor of 3 above the previous best ever
(MA or higher C levels) PIT wires.

100 m length multis now being made, working to translate full improvements to
these conductors

An MgB, layer growth mechanism was proposed for diffusion processed wires.

Further geometry optimization and anisotropy reduction should lead to even higher
J.s and Js
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Summary

High Performance Internal Magnesium Infiltration Strands are
achievable with Engineering Designs that have high reacted
areas inside filaments and strand fill factors

Je performance for some of these conductors is substantially
higher than PIT, and mulitifilamentary versions are better than
PIT

The improvements are such that they can push MgB2
conductors into new operational regimes, to point to this we
have called these more optimized Internal Magnesium Diffusion
conductors, second generation

N-values have been substantially increased, reaching above 30
for4.2 K, 7T, 10K, 6 T, and 15 K-5 T.

A wire in channel has been developed, and quench properties
have been evaluated

A coil has been wound with this WIC, and is being tested
presently
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