Advances in AIMI "Second Generation" MgB₂ Wires, n-values, and Coils

M.D. Sumption, G Li, Y Yang, M. Susner, C. Myers, C. Kovacs, E.W. Collings

Center for Superconducting and Magnetic Materials, MSE, The Ohio State University

Funded by a the state of Ohio, NIH, and a DOE SBIR M. A. Rindfleisch, M. J. Tomsic, C. J. Thong, D. Doll, HyperTech Research

Outline

- 1. Transport Results for Multifilamentary Advanced Internal Magnesium Infiltration (AIMI) (2G) strands
- Large increases in n-values for PIT strands at 4 K and as a function of B and T
- 3. Preliminary results for Wire-Inchannel NZP and MRI-like Coil Winding

But even in the "solid" regions, oxides limit current! BF TEM MgB₂ wire x-section

100 nm

Notice marbled structure --oxides at GB

> 1391_002.tif Cal: 0.005185 um/pix

2 μm

But we could get much higher layer J_c if we prevented this

10 210 13.8 MD-675/120-b

Acc.V Spot Magn Det WD 500 nm 20.0 kV 4.0 46692x TLD 6.7 S1172 Strand #2712 675C/60min

What is the effect of Anisotropy?

perconducting and Magnetic

Use a modified Eisterer model

 $-J_0$: 5x10⁶ A/cm²

-*B_{c2}*: 20 T

-*p_c*: 0.2- densely packed system

Increasing y causes a decrease in the amount of supercurrent percolation paths

As a result, J_c at high *B* decreases - effect intensifies with increase in γ

How about the influence of Porosity?

So....

- PIT MgB2 is limited by the effects of nanoscale non-optimum connectivity, in addition to the larger scale porosity
- Thus, when MgB2 is densified, we get a factor of 10, rather than a factor of 2
- Higher field drop off is sometimes entirely attributed to anisotropy, but about half comes from nanoscale connectivity
- Application of percolation theory to MgB₂ wires of different designs isolated the effects of porosity and crystalline anisotropy.
- Porosity was seen to be just as important a factor as

operconducting and Magnetic

- In particular, at 10 T, 60% of supercurrent degradation comes from anisotropy, 40% from porosity
- Can nearly eliminate the latter, reduce the former through doping

Motivation

- Diffusion processed wire (Mg-RLI or IMD): initiated by Giunchi *et al.* (Edison SpA) very dense, but low Jc because of powder type
- Developed by Kumakura et al. (NIMS) their B, much higher Jcs
 Further developed at OSU-HTR use of very fine B, and C-doping led to even higher Jcs

Measurement of J_c and n for monofilaments

IOP PUBLISHING

SUPERCONDUCTOR SCIENCE AND TECHNOLOGY doi:10.1088/0953-2048/25/2/025001

Supercond. Sci. Technol. 25 (2012) 025001 (10pp)

Critical current densities and *n*-values of MgB₂ strands over a wide range of temperatures and fields

G Z Li, Y Yang, M A Susner, M D Sumption and E W Collings

Center for Superconducting and Magnetic Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA

Table 1. Monofilamentary strand specifications and conditions.

Name	Process	$MgB_2 \text{ core}^a$ diam. (μ m)	Dopant conc. (mol% C ^b)	Strand fill factor (%)	Heat treatment at soak		
P 0	CTFF	$419(d_0)$	0	25.2	675°C/20 min		
P2	CTFF	$325(d_0)$	2.09	15.2	675°C/20 min		
P3	CTFF	$302(d_0)$	3.15	13.1	700 °C/20 min		
I2	IMD	270 (d_0) 204 (d_i)	2.09	5.2	675 °C/30min		

^a Mg:B atomic ratio, 1:2.

^b Based on C analysis by the LECO Corporation and normalized to the molar weight of MgB₂. No assumptions are made here concerning the expected uptake of C into the B sublattice; see, however, [15].

Table 2. Transport properties of the

Strand	P 0	P2	P3	I2
$J_{\rm ct0,10K}$ (10 ⁵ A cm ⁻²)	18.4	8.1	10.4	59.6
$B_{0,10 \text{ K}}$ (T)	1.07	1.86	2.30	1.90
$F_{\rm p, max, 10 K}$ (GN m ⁻³)	7.2	5.5	8.7	41.5
$F_{p,max,4,2 \text{ K}}$ (GN m ⁻³)	5.6	8.4	11.3	60.9
Estimated connectivity, $K(\%)$	12	9	15	69

Magnetic Field, B, T

Figure 2. Transport J_{ct} and magnetic J_{cm} versus *B* in transverse applied fields at temperatures between 4.2 and 30 K for (a) strand P0 (undoped CTFF), (b) strand P2 (2% C-doped CTFF), (c) strand P3 (3% C-doped CTFF), and (d) strand I2 (2% C-doped IMD). The J_{ct} are represented by lines through data points; the J_{cm} are represented by the 'corresponding' full lines (arranged right-to-left in descending order of temperature).

 $F_{p,max}$ reaches 60 GN/m³– it's like Nb₃Sn^{of temperature).}

Department of Materials . Science and Engineering

Magnetic Field, B, T

Motivation \rightarrow Modification

- Diffusion processed wire (Mg-RLI or IMD): initiated by Giunchi *et al.* (Edison SpA) very dense, but low Jc because of powder type
- 2. Developed by Kumakura *et al. (NIMS) their B, much higher Jcs*
- 3. Further developed at OSU-HTR use of very fine B, and C-doping led to even higher Jcs
- 4. But area of MgB2 small making this of more scientific than practical use. How to maximize conversion, and thus Ic?

A comparison to best-of Results

Second generation MgB_2 wires: both improved critical current density J_c and engineering J_e .

Samples

Comple No		HT time at		
Sample No.	Diameter, mm	675 °C, h		
A1	0.83	0.5		
A2	0.83	1		
A3	0.83	8		
B1	0.55	0.5		
B2	0.55	A 1777		
B3	0.55	4		

Table 1 Monocore wire Diameter and HT Conditions

- 2% C doped plasma synthesized B (40 nm, Special Materials Inc.).
- Temperature: 675 °C, based on experience with PIT wires.
- Fabricated and heat treated at Hyper Tech Research, Inc.
- Transport J_c measurement at 4.2 K, up to 12 T.

SEM & EDS: Quanta 200 with EDAX EDS system, FEI Sirion SEM.

A-series Infiltration-Processed Strands

1.1

0.9

0.7

0.5

0.2

0.0

uperconducting and Magnetic Materials

- MgB₂ circular layers are formed.
- MgB₂ composition and structure identified.
- B is not fully reacted even after 8 h at 675 °C.

A3:8h

Mg

(C)

MgB₂

Nb

Department of Materials Science and Engineering

1.20

1.40

B-series Infiltration-Processed Strands

- MgB₂ circular layers are formed but the Mg rod is off-centered.
- B is fully reacted after 4 h heat treatment at 675 °C.
- MgB₂ area and layer thickness are listed in table 2.

Comparison of A- & B-series Strands

Sample No	HT time at	MgB ₂ layer	MgB ₂ area,	MgB ₂ fill	MgB ₂ + B fill
Sample No.	675 °C, h	thickness, µm	μm²	factor, %*	Factor, %**
A1	0.5	0 ~ 30	26900	4.4	21.1
A2	1	10 ~ 50	38200	6.3	19.7
A3	8	15 ~ 60	44800	7.5	19.1
B1	0.5	0 ~ 40	25100	10.1	19.6
B2	1	0 ~ 49	28000	11.2	19.7
B3	4	0 ~ 90	46700	18.8	18.8

Table 2: MgB₂ Layer Thickness, Areas and Corresponding Fill Factors

* Area fraction of MgB_2 in the overall transverse cross section of the wire

- ** Area fraction of MgB₂ plus unreacted B powder after heat treatment
- MgB₂ layer thickness increases as HT time increases.
- MgB₂ fill factor increases as HT time increases.

Layer J_c & Engineering J_e

layer $J_c = I_c / MgB_2$ area

 $J_e = I_c$ / whole area

layer J_c:

A-seriesHT time \uparrow , J_c \uparrow ; A3: 1.04x10⁵ A/cm² at 10 TB-seriesHT time \uparrow , J_c \downarrow ; B1: 1.07x10⁵ A/cm² at 10 T

• Engineering *J_e*:

B-series is better than A-series because of its high MgB₂ fill factor.

So, layer J_c is 10 x for 2G (and IMD), but How do the J_e results compare to PIT?

perconducting and Magnetic Materials

We have to correct for doping level and special processing

A head to head comparison is shown by the red filled circles and the gray diamonds - about a factor of 5 in J_e !

Pressure processing (sequential pressing, Flukiger/Hossain) on the same PIT wires is also shown (open circles)

We have found 3-4% C can given high J_c s in PIT wires, now implementing in IMD

MgB₂ Layer Growth Mechanism

- Step I: Melting of the Mg rod
- Step II: Liquid Mg infiltration and reaction with B
 - $Mg + 2B \rightarrow MgB_2$
 - B particles volume expansion are $\sim 90\%$ considering: (a)
 - and (b) V_{MgB2} : 17.46 cm³/mol
 - A dense MgB₂ circular layer is formed.
- Step III: Mg atomic diffusion through the dense MgB₂ layer
 - Atomic GB diffusion: Quite slower process than liquid Mg infiltration in step II. Grain growth during long HT time, resulting in reduced layer J_c .

Demonstration: MgB₂ Layer Growth Mechanism

Principle to Design a Well-Performed Wire

(S J Ye *et al*, Physica C, 2011; K Togano *et al*, SUST, 2009; G Z Li *et al*, SUST, 2012; Y Yang *et al*, IEEE Trans Appl Supercond, 2012; M Hossain *et al*, SUST, 2009; M Herrmann *et al*, APL, 2007; D L Wang *et al*, SUST, 2012)

Further Explorations I: layer J_c enhancement

Carbon doping level

3% and 4% C doped diffusion processed strands, heat treated at 675 C, 4H.

Best layer J_c for 3% C doped diffusion processed strands: 1.57×10^5 A/cm² at 4.2 K, 10 T.

Further Explorations II: Multifilamentary 2G Wires

• 2G MgB₂ multifilamentary long strands (ITER barrel).

Layer J_c and J_e higher than typical multifilamentary PIT barrels, but lower than our best 2G monocore short wires.

N-values in PIT MgB₂

- Improvements in 4 K values
- Improvements in n values as a function of B and T

Strand Types

Strand #	# Mono	Barrier	Mono	Multi	Central fil(s)	powder material	dia (mm)	% nowder	HT (°C/min)
	INIONO	Darrier	Sheath	Sheath	111(3)	matchai	(11111)	powaci	
3139	24	Nb	-	Monel	Cu	MgB2_2%C‡	0.83	11.7	675 / 60
3139	24	Nb	_	Monel	Cu	MgB2 2%C‡	0.83	11.7	700 / 60
3124	30	Nb	-	Monel	Cu	MgB2 2%C	0.83	23.3	675 / 60
3124	30	Nb	_	Monel	Cu	MgB2 2%C	0.83	23.3	, 700 / 60
Early Barrel Study									
3139-S1307	24	Nb	-	Monel	Cu	MgB2_2%C‡	0.83	11.7	675 / 60
3124-S1300	30	Nb	-	Monel	Cu	MgB2_2%C	0.92	23.3	675 / 60

J_c and *n* value at 4.2K

24 Filament (3139-S1307)

Regimes of n-value

enter for Superconducting and Magnetic Materials

WIC and Coil Test

- WIC Test
- Coil Manufacture and Test

WIC NZP and Quench (gas cool)

MgB2 Coil, 100 m of WIC MgB2 Conductor

HTR: MgB2 strand, Wire-inchannel Conductor

HTR: Coil wound, coil epoxy impregnated by HTR

OSU: Coil Instrumented with 30+ voltage taps, 18+ thermocouples, , other sensors

OSU: Cool down and Test

Superconducting and Magnetic Materials

Initial Coil Cool-down

Tc transition for coil

Center for Superconducting and Magnetic Materials

Science and Engineering

Summary

- Percolation-based models were used to compare PIT and IMD MgB_2 wires, and it was found that previous treatments which attributed all high field J_c loss to anisotropy were overly pessimistic, with about 40% (or a large reduction) due to porosity
- This led to an impetus to push IMD from "scientifically interesting" (high J_c (10 X PIT), low J_e) to practical conductors
- These considerations led to advanced, "2G", MgB₂ wires were fabricated by incorporating (1) a Mg diffusion method, (2)fine B powder, (3) C-doping at the powder level, (4) Mg/B ratio, and (5) strand geometry modifications.
- 2G MgB₂ wires had dense MgB₂ layer structures, enabling best layer J_c of 1.0x10⁵ A/cm² at 4.2 K and 10 T (*an increase by a factor of 10!)*
- The best J_e of sample B3 achieves 15.7 kA/cm², in increase of about 5 from the same chemistry PIT conductors, and *a factor of 3 above the previous best ever* (MA or higher C levels) PIT wires.
- 100 m length multis now being made, working to translate full improvements to these conductors
- An MgB₂ layer growth mechanism was proposed for diffusion processed wires.
- Further geometry optimization and anisotropy reduction should lead to even higher J_c s and J_e s

Summary

- High Performance Internal Magnesium Infiltration Strands are achievable with Engineering Designs that have high reacted areas inside filaments and strand fill factors
- Je performance for some of these conductors is substantially higher than PIT, and mulitifilamentary versions are better than PIT
- The improvements are such that they can push MgB2 conductors into new operational regimes, to point to this we have called these more optimized Internal Magnesium Diffusion conductors, second generation
- N-values have been substantially increased, reaching above 30 for 4.2 K, 7 T, 10 K, 6 T, and 15 K-5 T.
- A wire in channel has been developed, and quench properties have been evaluated
- A coil has been wound with this WIC, and is being tested presently

