

Development of MgB₂ superconductor wire and coils for practical applications at Hyper Tech Research

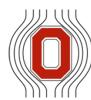
A Status Report

Oral session 3M OrD1 20 June 2013 David Doll Matt Rindfleisch Mike Tomsic Jinji Yue CJ Thong Xuan Peng

Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials Hyper Tech

Hyper Tech Research Inc

539 Industrial Mile Rd.Columbus, OH43228-2412



Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

Partners and Collaborators

Universities:

Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

Key OSU Personnel Mike Sumption

Mike Sumption Ted Collings Milan Majoros Guangze Li Yuan Yang Mike Susner Chris Kovacs Madhu Kongara

Industrial:

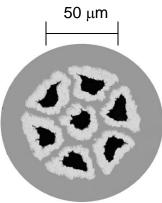
Siemens GE Phillips ASL Rolls-Royce Aurora

Supporting Agencies:

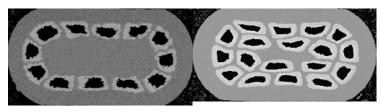
State of Ohio U.S. DOE HEP NIH MIT NIST NASA DOD: USN, USAF Wollongong NHMFL FSU IEMM I FT SMI MMP

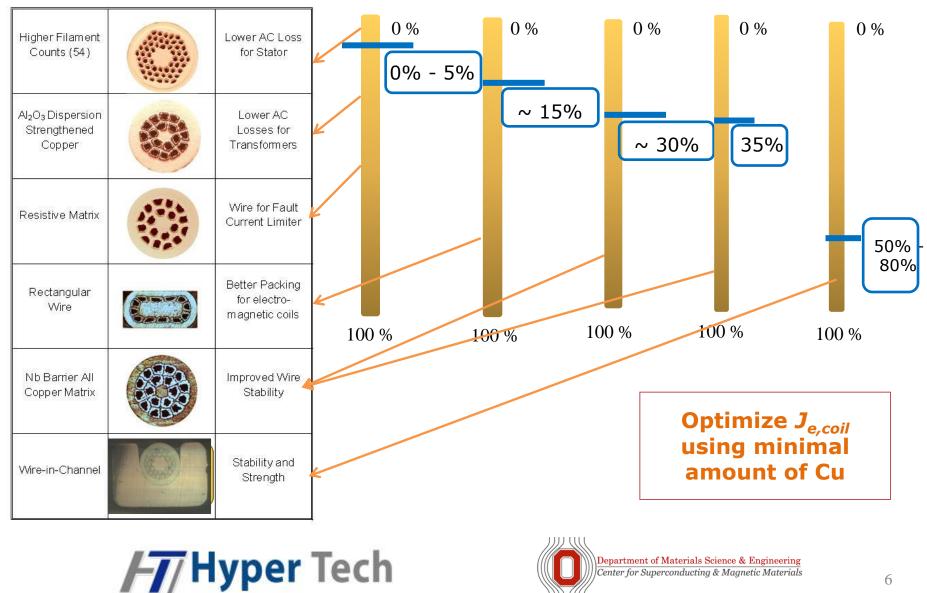
Outline

- **#** Hyper Tech's MgB₂ superconductors
 - Strand configurations
 - Conductor properties
 - Next generation
 - Analytical methods development
- **%** Commercial applications of MgB₂
 - MRI
 - Motors and generators
 - Superconducting Fault Current Limiters
 - Cost implications

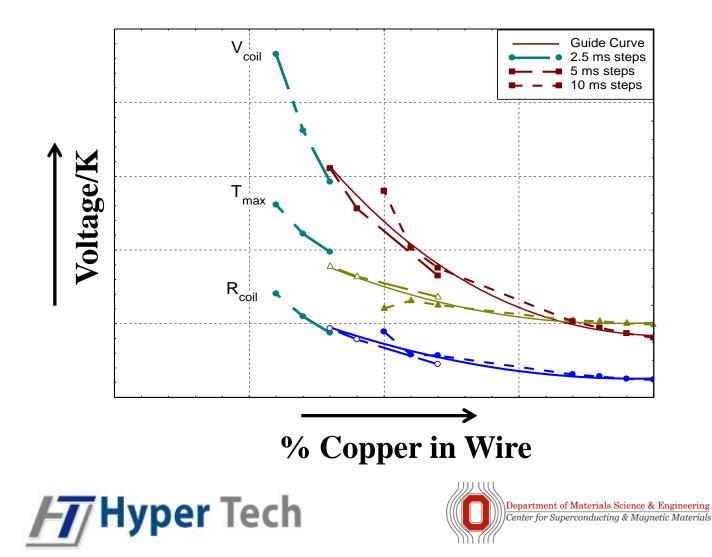

MgB₂ Strand Architecture

Hyper Tech can match strand configuration to wire specification:


- Powder recipe
- Barrier: Nb, Fe, Cu, Ni, Ti
- Outer sheath: Monel, SS, Ni, ODS Cu, Cu
- Matrix: Monel, SS, Ni, ODS Cu, Cu
- Number of filaments
- Diameter (< 0.1 mm is possible)
- Effective filament diameter
- Shape
- Cu %
- Coil design (e.g., W&R / R&W)
- Insulation


Round and very small diameter

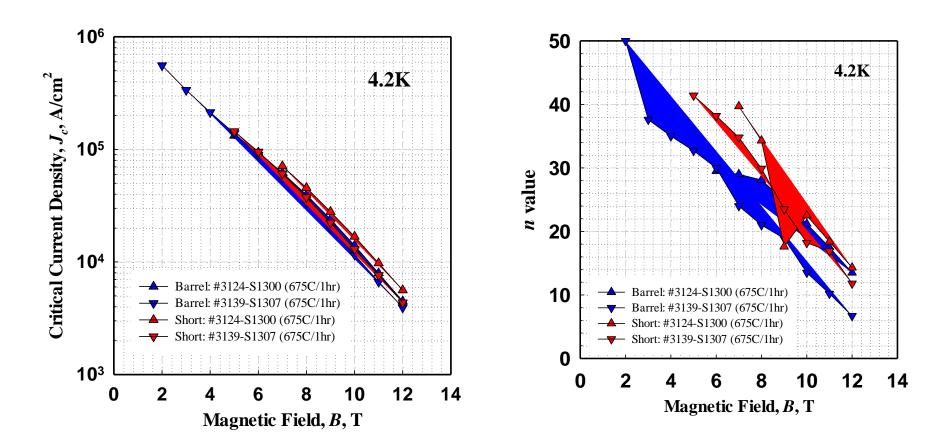
Shaped Architecture



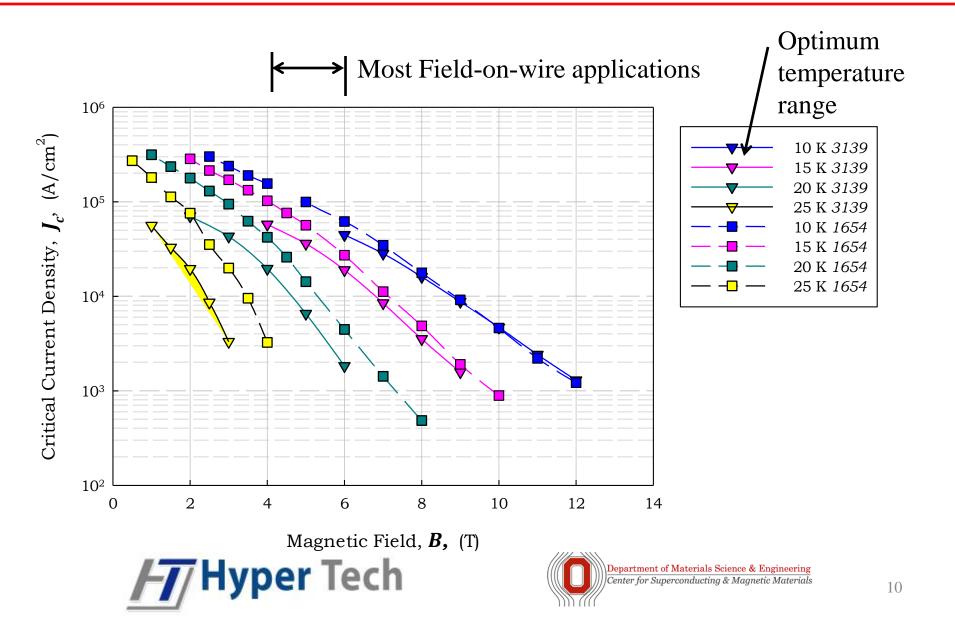
MgB₂ Strand Design: % Cu

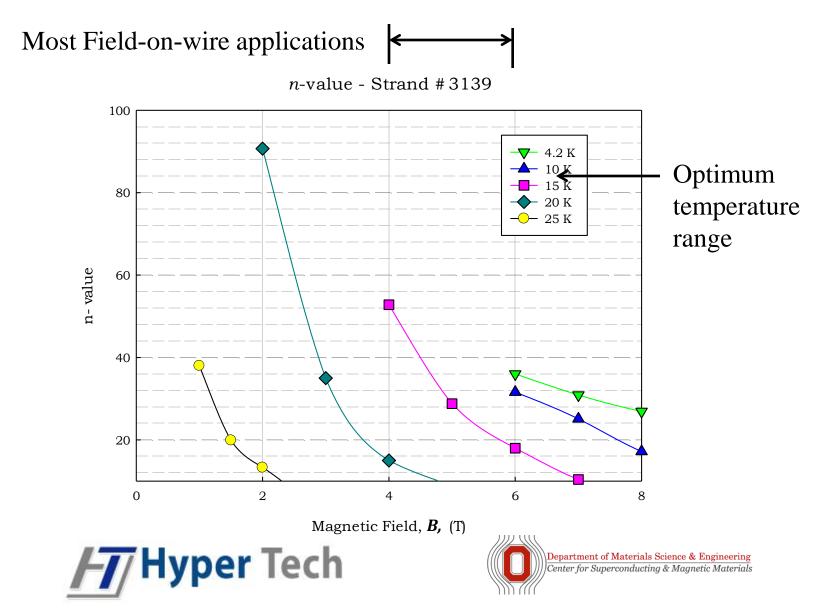
Copper in a MgB₂ Wire for Quench Protection

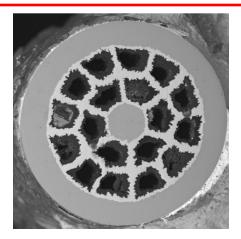
Important Trade Between Je and % Copper in Wire for Each Coil Design


Analytical Methods Being Developed

- Wire drawing process
 - Predicts limiting strain
 - Optimizes wire drawing speed
 - Estimates thermal management
- ✤ Magnet quench protection
 - Simulates quench event beginning with wire
 - Predicts maximum wire temperature
 - Predicts current decay and peak voltage
 - Establishes Cu:SC ratio for safe operation
 - Provides 3D flux profile
 - Multi-coil coupling capability
- ✤ Coil design
 - Calculate stress, strain and deflection in coil
 - Accounts for winding, cool-down and energizing
 - Includes former, all wire layers and interfaces
- ✤ FE thermal and stress capability


MgB₂ Wire Performance at 4.2 K



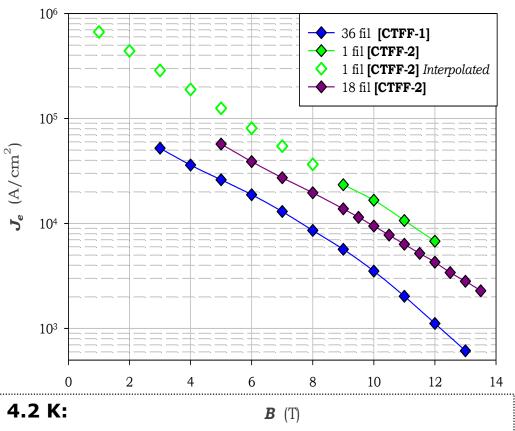

Jc Values in Acceptable Range

MgB₂ N-Values

Improving connectivity

 2^{nd} Generation MgB₂ wire

18% Superconductor Fraction


Engineering Current Density

100 m long CTFF-2 type fabricated

Engineering Current Density, J_{er} 5 T, 4.2 K:

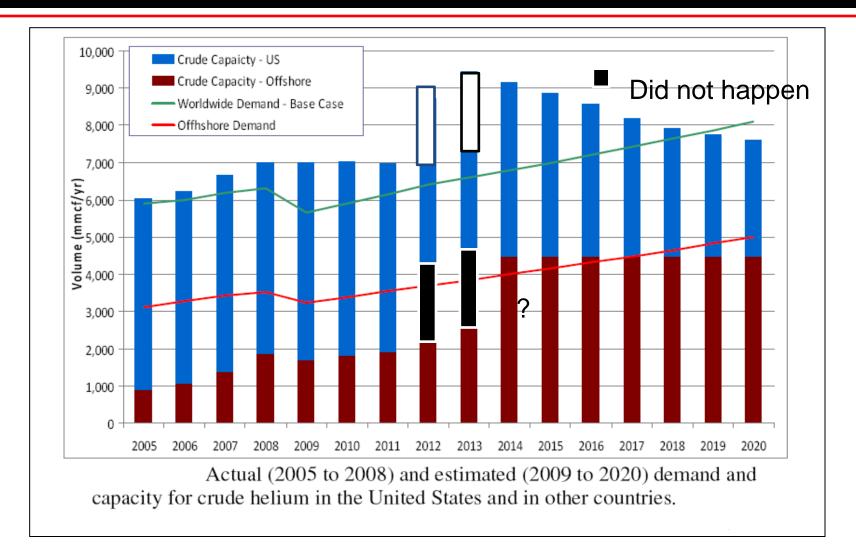
CTFF-1 (best of class 36 filament) CTFF-2 (18 filament) CTFF-2 (monofilament, extrapolated)

26,000 A/cm² 58,000 A/cm² 122,000 A/cm² 4.7x increase

In-House Capabilities

Newly Added Process Equipment for Strain-Sensitive Superconductors:

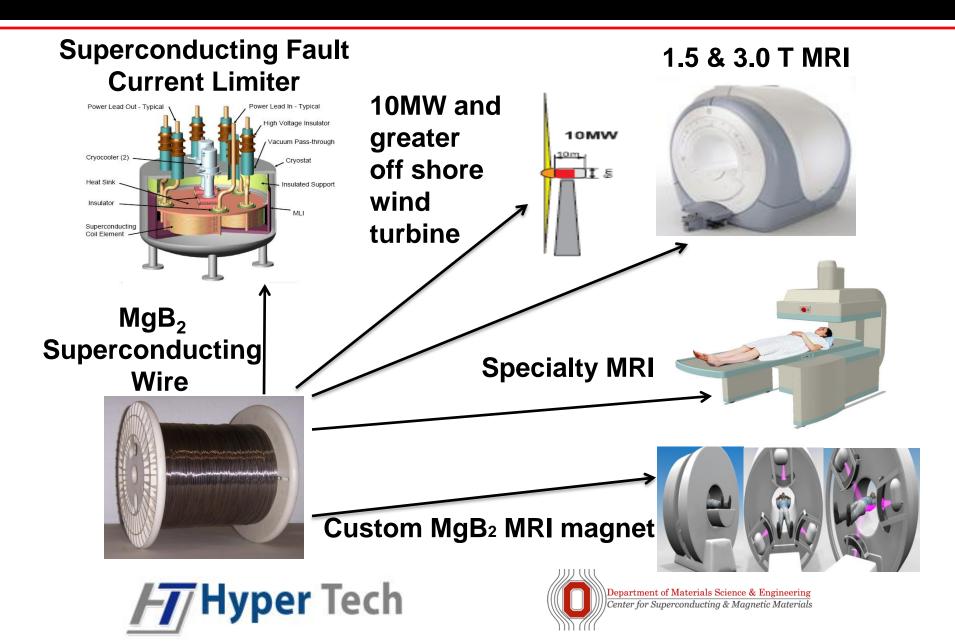
- Welded seam CTFF process for mono- and multi-filament wire
- Large capacity twisting
- Wire-in-channel soldering
- Insulation braiding
- 1m+ coil winding capacity designed
 for strain-sensitive wire
- 6 km lengths (currently)
- Equipment in place for 60+km lengths -
- Large conduction cooled coil testing at OSU



Helium Shortage Worldwide

Hyper Tech's Commercialization Activity

MgB₂ Enables Economical Superconducting Systems

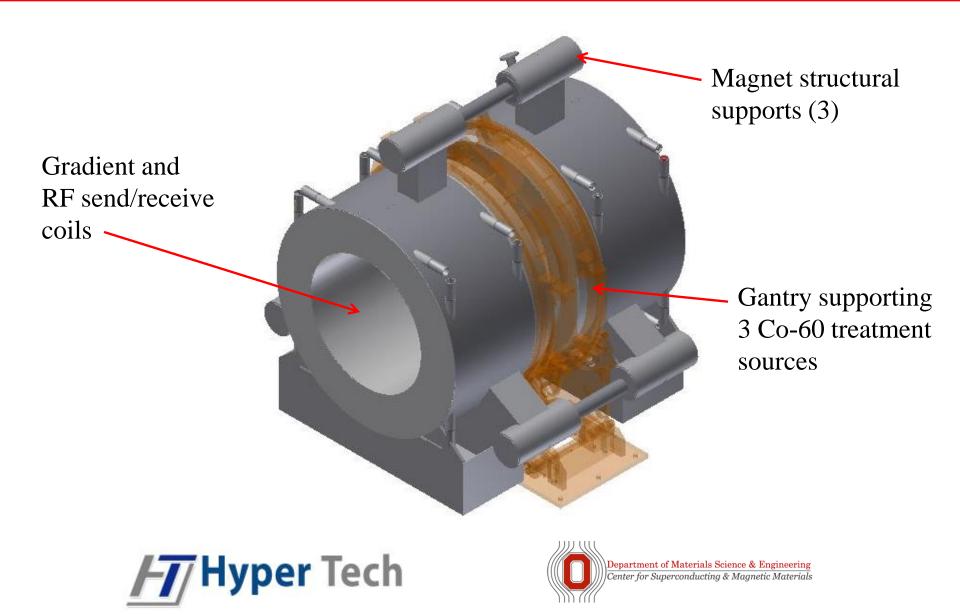

Companies and Institutions Working with Hyper Tech on MgB2 Applications :

- <u>MRI</u> 8 as part of Hyper Tech's magnet program for imaged guided radiation therapy MRI background magnet.
- <u>Wing Turbine Generators</u> 6 on Hyper Tech's electric power generator development project
- <u>SFCL</u>- 2 organizations covering both resistive and inductive type FCLs
- <u>DC cable</u> 2 projects
- <u>SMES</u> 1 project

MgB₂ wire – platform technology

Problems Facing Major Full-Body MRI Producers

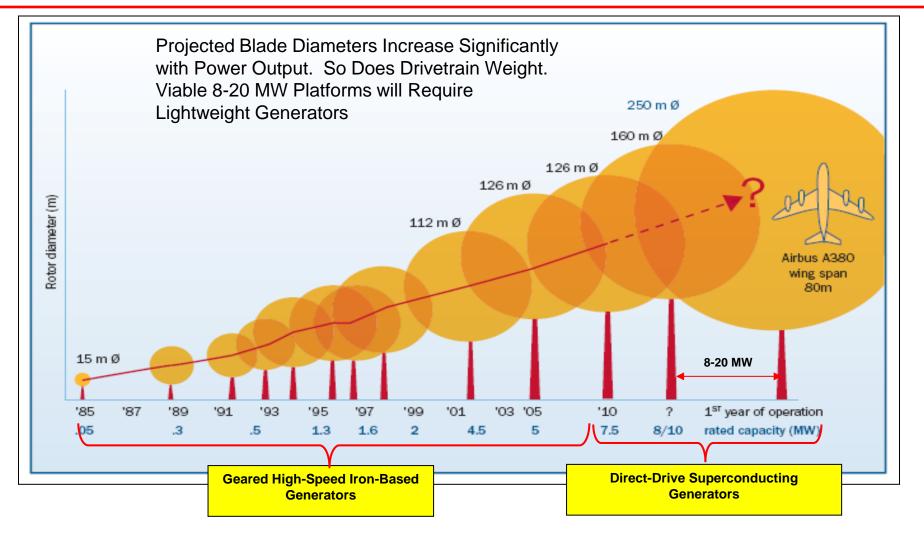
\$3 billion MRI market at risk


- All current MRIs use liquid helium bath cooling (NbTi SC)
- Rising liquid helium cost effects felt worldwide
- Tripled in price in US the last 5 years
- Predicted to increase further over the next 5 years
- Liquid helium in the field can be as much as \$100K over the life cycle of the MRI system (depending on number of quenches)
- Helium is currently unavailable in some locations in the world
- MRI initial cost and maintenance fees destined to be prohibitive

The only solution to this problem is to develop helium-free conduction-cooled MRIs and MgB2 is the best conductor to do so.

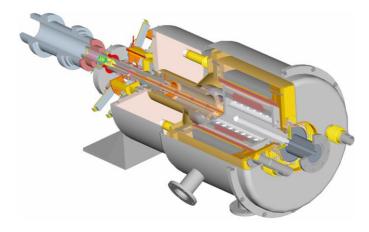
IGRT Background Magnet

DOE's Goals and Objectives for Wind Power


Component	2010	2020	2030	2010 - Land
Installed Capital Cost (\$/kW)	\$ 4,259	\$ 2,900	\$ 2,600	\$ 2,120
Discount Rate Factor (DRF) ⁶	20%	14%	8%	12%
Turbine Rating (MW)	3.6	8.0	10.0	1.5
Rotor Diameter (m)	107	156	175	77
Annual Energy Production / Turbine (MWh)	12,276	31,040	39,381	4684
Capacity Factor	39%	44%	45%	36%
Array Losses	10%	7%	7%	15%
Availability	95%	97%	97%	98%
Rotor Coefficient of Power	0.45	0.49	0.49	.47
Drivetrain Efficiency	0.9	0.95	0.95	0.9
Rated Windspeed (m/s)	12.03	12.03	12.03	10.97
Average Wind Speed at Hub Heights (m/s)	8.8	9.09	9.17	7.75
Wind Shear	0.1	0.1	0.1	.143
Hub Height (m)	80	110	120	80
Cost of Energy (\$/kWh)	0.27	0.10	0.07	0.09
Cost of Energy (\$/kWh) at constant 7% DR	0.12	0.08	0.07	0.08

Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

Evolution of Wind Generator Platforms



Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

Motors and generators

Emerging power systems:

- Wind turbine generators (8-10 MW)
- Aircraft turbo-generators (8-10 MW)
- Offshore oil platform motors (5-10 MW)
- Marine propulsion and generation systems (4-20 MW)
- Portable emergency power systems (4–8 MW)

Motors and generators

Advantages of MgB₂:

- Reduction of size and weight of machine
- Significant reduction of cost
- No joints in rotor pole (long length conductor*)
- Faster normal zone propagation
- Meets current density requirements (< 4T)
- Made round to be easier to configure into complex coil geometries
- Persistent coils

Compared with NbTi, YBCO, BSCCO and Nb3Sn, MgB2 conductor adds the least cost to the overall wind generator cost*.

 * Enabled by Technology Innovation Program, "High-Speed, Continuous Manufacturing of Nano-Doped Magnesium Diboride Superconductors for Next-Generation MRI Systems."

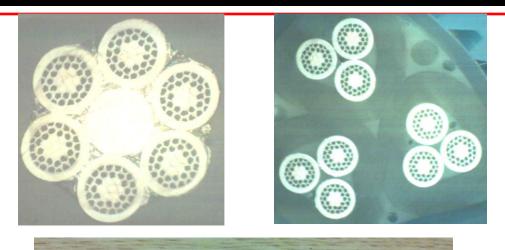
10 MW Wind Generator Systems

Performance Parameter	Conventional with gear box	Permanent Magnetic Direct Drive	SC Generator (YBCO) Direct Drive	SC Generator (MgB ₂) Direct Drive	SC Generator (Nb ₃ Sn) Direct Drive	SC generator (NbTi) Direct Drive
Gen. Power (MW)	10	10	10	10	10	10
RPM	8-15	8-15	8-15	8-15	8-15	8-15
Diameter m (ft)	High speed generator Plus large Gear box	10 (31)	4.9 (16)	4.5 (14.8)	4.0(12)	4.0(12)
Rotor Excitation	Copper	Rare earth Magnets	YBCO	MgB ₂	Nb3Sn	NbTi
Operating Temp	130 C	Ambient	30- 35K	20K	10K	4K
Weight (tons)	250-300	250-300	120 - 150	100-120	90-110	100-120

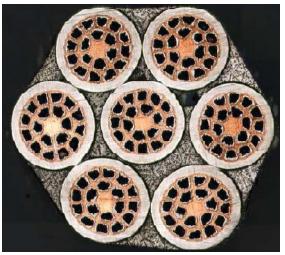
Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

MgB₂ Fault Current Limiter

Advantages of MgB₂ wire for Fault Current Limiters


- Low cost especially as compared to ceramic superconductors
- Can be sized to carry a specified current level
- The sheath thermal properties and electrical resistivity can be varied to match operational requirements
- Can be twisted to reduce AC loss and braided for insulation.
- Low equipment costs to scale manufacturing to commercial production quantities
- Is readily available in quantity and lengths required to support SFCL demand

Hyper Tech working with two companies to match MgB₂ wire to meet their resistive and inductive SFCL design requirements.



Multi-strand MgB₂ Cable Demonstration

Other low field magnets or cables MgB₂ could be considered for:

- Novel circular superconducting quadrupole for linear accelerators
- Other DC cables
- ? Superconducting cyclotrons (peak fields on wire below 8T)
- ? Muon collider MICE experiments (large bore, peak fields on wire below 6T)

10° pitch angle

Actual pitch angle 20deg.

20° pitch angle

Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

Conclusions

- Hyper Tech has brought MgB₂ wire development to commercial readiness.
- We can customize MgB₂ wire to meet requirements for MRI background magnets, motors/generators and fault current limiters.
- We are poised to produce long lengths greater than 60 km.
- Wire properties have reached application relevant levels with potential improvements in foreseeable future.
- Design tools and manufacturing capability in place to produce MgB_2 coils for a range of applications.

---- thank you for your attention