New processing methods for niobium SRF resonators for maximization of quality factor for CW applications

Anna Grassellino SRF Development Department, Technical Division

With: A. Romanenko, O. Melnychuk, A. C. Crawford, A. Rowe, M. Wong, D. Sergatskov, T. Khabiboulline, A. Sukhanov, Y. Trenikhina, F. Barkov, D. Bice, B. Stone, C. Baker, Y. Pischalnikov, C. Ginsburg, L.D. Cooley, V. Yakovlev, R.D. Kephart

Outline

- Planned machines operate in CW mode
- Microwave surface resistance for standard treatments: *new methodology developed* to extract the the temperature dependent and independent component as a function of field
- *New* processing techniques for Q maximization:
 - 120C bake followed by HF rinse
 - Annealing followed by HPR only (no material removal via chemistry)
 - Heat treatments in nitrogen atmosphere

Motivation for higher Q

- RF load in CW regime determines the power consumption of a cryogenic system and thus:
 - Capital cost of the cryogenic system (significant impact on project)
 - Operational cost ~ RF load ~ Q₀⁻¹
 - High Q₀ allows higher gradient at CW and, thus, allows lower capital cost of the linac.

 $Q_0 = \omega U/P_{diss} = G/R_s$ <u>CW machines: high $Q_0 \rightarrow Iow$ </u> <u>surface resistance is crucial</u>

$$R_s = R_{BCS}(T) + R_0$$

What is Q and R_s(B) for standard treatments?

Field Dependence of Surface Resistance for typical treatments

- $Q = G/R_s$, where $R_s = R_{BCS}(T) + R_{residual}$
- Crucial question how does *medium field Q-slope* emerge from its components R_{BCS} (B) and R_{residual} (B)?
- Answering allows:
 - Obtain R_s(B,T) predictions for any standard treatment (EP, BCP, mild bake, anneal...) to design accelerators -> missing input for optimization
 - Baseline for comparison with new, innovative treatments
 - Fundamental understanding of "Q-slopes"

Approach

 Obtain as many Q(B,T) measurements as practical at *ALL fields* (not only at a single low field as is customary)

- At each fixed field fit corresponding Q(T) to extract R_{residual}
 - Also gives $R_{BCS}(T) = Rs(T)$ - $R_{residual}$

A. Romanenko and A.Grassellino http://arxiv.org/abs/1304.4516

Bath temperature

Results (1.3 GHz)

A. Romanenko and A.Grassellino http://arxiv.org/abs/1304.4516

🛟 Fermilab

- Medium field Q slope combines both R_{residual}(B) and R_{BCS}(B)
- R_{BCS} decreases but becomes *strongly field dependent after 120C*
- Medium field Q slope is *NOT due to thermal feedback*
- Stronger R_{residual}(B) for *BCP than for EP*

New surface processing techniques for Q maximization

Simple higher Q₀ recipe: 120C bake +1 HF rinse

Annealing with caps+ no chemistry produces extra-low residual resistance

• Systematically low R₀

- Extra cost savings from skipping the post furnace chemical processing
- See also G. Ciovati, Phys. Rev. ST Accel. Beams 13, 022002 (2010) T of ENERGY

A.Grassellino et al, http://arxiv.org/abs/1305.2182

CAVITY ID	Туре	Treatment	Q at 5 MV/m, T = 2K	Residual Resistance at 5 MV/m (nΩ)
TE1AES016	Large grain	EP + 800°C 3 hrs no caps, argon venting	3.5e10	1.47±0.44
TE1AES013	Fine grain	EP + 800°C 3 hrs with caps plus foil, dry air venting	2.4e10	<1.09
PIPPS003	Fine grain	CBP + EP + 800°C 3 hrs with caps plus foil, nitrogen venting	3.5e10	1.45±0.84
TE1ACC001	Fine grain	EP + 800°C 3 hrs with caps only, nitrogen venting	3.5e10	0.85±0.67

Heat treatments in nitrogen produce unprecedented values of R_{BCS}(B)

A.Grassellino et al, http://arxiv.org/abs/1306.0 288

- Cavities baked at high T in partial pressure of nitrogen
- After the treatment followed by some material removal via EP, *Q* improvements up to a factor of 3 compared to standard processing!

🛟 Fermilab

Heat treatments in nitrogen produce field dependence reversal of R_{BCS}

Q curves as a function of material removal via EP post-nitrogen treatment *(indicate optimal N to Nb concentration ratio)* :

Conclusions

- Different recipes found for Q improvement
 - Anneal before EP (see 2MOrC-05)
 - Long anneals, with care for contaminants
 - HF rinsing
 - Nitriding
 - <u>Reverse medium field Q-slope!</u>
 - Up to **150% gain in Q** in the T range of interest for CW accelerators

Fermilab

 Recipes are extremely simple, can be replicated at any lab with access to a standard hydrogen degassing furnace

