$B_{d,s}$ mixing & CP violation

Zoltan Ligeti

CERN, Oct 14-16, 2013

- Future NP sensitivity in B, K mixing [Charles, Descotes-Genon, ZL, Monteil, Papucci, Trabelsi, 1309.2293]
- $|V_{ub}|,$ right handed currents in $B o
 ho\ellar
 u,$ etc. [w/ Bernlochner & Turczyk, arXiv:131a.bcde]
- Conclusions

Waited 20 + years for the LHC

- Conventional views of fine tuning and naturalness in growing tensions with data
- Recent discoveries:
 - SM-like Higgs, no deviations from SM (Large *A* terms? Extend Higgs sector?)
 - Not even $B_s \rightarrow \mu^+ \mu^-$ deviates from the SM by $\mathcal{O}(1)$
- If NP is 10-100 TeV ("split"), flavor especially crucial (less constraints, high reach) Flavor can help naturlaness: w/o degeneracy, squark bounds $1.2 \text{ TeV} \rightarrow 0.5 \text{ TeV}$ [Gedalia, Kamenik, ZL, Perez, 1202.5038; Mahbubani, Papucci, Perez, Ruderman, Weiler, 1212.3328; etc.]
- The higher the scale of NP, the less its flavor structure has to be SM-like
- Measurements probe $\begin{cases} TeV$ -scale physics with SM-like flavor structure 100-1000 TeV physics with generic flavor structure
- We do not know where NP will show up \Rightarrow mixing is sensitive to very high scales

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." [Feynman]

Flavor probes $10^2 - 10^5$ TeV scale

• Neutral meson mixings: dimension-6 operators, with coefficients C/Λ^2

Operator	Bounds on Λ [TeV] ($C=1$)		Bounds on C ($\Lambda = 1$ TeV)			
Operator	Re	Im	Re	Im	Observables	
$(ar{s}_L\gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	Δm_K ; ϵ_K	
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ϵ_K	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$	
$(ar{c}_R u_L)(ar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$	
$(ar{b}_L\gamma^\mu d_L)^2$	6.6×10^2	9.3×10^2	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$	
$(ar{b}_Rd_L)(ar{b}_L d_R)$	2.5×10^3	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$	
$(ar{b}_L \gamma^\mu s_L)^2$	1.4×10^2	2.5×10^2	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$	
$(\bar{b}_R s_L) (\bar{b}_L s_R)$	4.8×10^2	8.3×10^2	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{Bs};S_{\psi\phi}$	

[Isidori, Perez, Nir, 1002.0900; Isidori 1302.0661]

If $\Lambda = \mathcal{O}(1 \text{ TeV})$ then $C \ll 1$ If $C = \mathcal{O}(1)$ then $\Lambda \gg 1 \text{ TeV}$

 Flavor physics discoveries would give upper bound on a new energy scale e.g., if NP is 10−100 TeV (split, spread, etc.)

NP in mixing

What are we after?

Meson mixing:

Simple parametrization: $M_{12} = M_{12}^{\mathrm{SM}} \left(1 + \mathbf{h} e^{2i\sigma}\right)$

What is the scale Λ ? How different is $C_{\rm NP}$ from $C_{\rm SM}$? If deviation from SM seen \Rightarrow upper bound on Λ

• Assume: (i) 3×3 CKM matrix is unitary; (ii) tree-level decays dominated by SM

 $M_{12} = M_{12}^{SM} \times \left(1 + h e^{2i\sigma}\right)$ In K system introduce h_K in "tt" contribution

• Mature topic, conservative picture of future progress

Inputs: many measurements & calculations

- Any future projection has uncertainties; sources of experimental and theoretical (lattice) inputs shown
- Lattice QCD is essential
- If NP discovery hinges on one ingredient, will need cross-checks (e.g., lattice w/ different formulations)

	2003	2013	Stage I		Stage II	
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id		id	
$ V_{us} $ $(K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id	
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228 \pm 0.011) \times 10^{-3}$	id		id	
$\Delta m_d \ [\mathrm{ps}^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id		id	
$\Delta m_s \ [\mathrm{ps}^{-1}]$	> 14.5 [95% CL]	17.768 ± 0.024	id		id	
$ V_{cb} \times 10^3 \ (b \to c \ell \bar{\nu})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3	[17]
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08	[17]
$\sin 2\beta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008	[17]
$\alpha \pmod{\pi}$	—	$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$	[17]
$\gamma \pmod{\pi}$		$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1\pm1)^\circ$	[17, 18]
β_s	—	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004	[18]
$\mathcal{B}(B\to\tau\nu)\times 10^4$		1.15 ± 0.23	0.83 ± 0.10	[17]	0.83 ± 0.05	[17]
$\mathcal{B}(B\to \mu\nu)\times 10^7$			3.7 ± 0.9	[17]	3.7 ± 0.2	[17]
$A^d_{ m SL} imes 10^4$	10 ± 140	23 ± 26	-7 ± 15	[17]	-7 ± 10	[17]
$A^s_{ m SL} imes 10^4$		-22 ± 52	0.3 ± 6.0	[18]	0.3 ± 2.0	[18]
\bar{m}_c	$1.2\pm0\pm0.2$	$1.286 \pm 0.013 \pm 0.040$	1.286 ± 0.020		1.286 ± 0.010	
\bar{m}_t	167.0 ± 5.0	$165.8 \pm 0.54 \pm 0.72$	id		id	
$\alpha_s(m_Z)$	$0.1172 \pm 0 \pm 0.0020$	$0.1184 \pm 0 \pm 0.0007$	id		id	
B_K	$0.86 \pm 0.06 \pm 0.14$	$0.7615 \pm 0.0026 \pm 0.0137$	0.774 ± 0.007	[19, 20]	0.774 ± 0.004	[19, 20]
f_{B_s} [GeV]	$0.217 \pm 0.012 \pm 0.011$	$0.2256 \pm 0.0012 \pm 0.0054$	0.232 ± 0.002	[19, 20]	0.232 ± 0.001	[19, 20]
B_{B_s}	1.37 ± 0.14	$1.326 \pm 0.016 \pm 0.040$	1.214 ± 0.060	[19, 20]	1.214 ± 0.010	[19, 20]
f_{B_s}/f_{B_d}	$1.21 \pm 0.05 \pm 0.01$	$1.198 \pm 0.008 \pm 0.025$	1.205 ± 0.010	[19, 20]	1.205 ± 0.005	[19, 20]
B_{B_s}/B_{B_d}	1.00 ± 0.02	$1.036 \pm 0.013 \pm 0.023$	1.055 ± 0.010	[19, 20]	1.055 ± 0.005	[19, 20]
$\tilde{B}_{B_s}/\tilde{B}_{B_d}$		$1.01\pm0\pm0.03$	1.03 ± 0.02		id	
\tilde{B}_{B_s}		$0.91 \pm 0.03 \pm 0.12$	0.87 ± 0.06		id	

• γ and $|V_{ub}|$ are crucial (tree / reference UT): reassuring that 2-3% uncertainty in $|V_{ub}|$ seems obtainable from several measurements: $B \to \tau \nu$, $B \to \mu \nu$, $B \to \pi \ell \nu$ (NB: I don't see how inclusive $|V_{ub}|$ can compete, but still think it's important to push it to the limit)

The CKM fit with NP allowed in mixing

Much larger allowed regions when fitting more (NP) free parameters

Qualitative change after 2003: first constraints on γ and α

• At 95% CL, $\bar{
ho} < 0$ & $\bar{\eta} < 0$ is still allowed (importance of future $A^d_{
m SL}$)

• Stage II: Belle II $50 \text{ ab}^{-1} + \text{LHCb} 50 \text{ fb}^{-1}$ Stage I: Belle II $5 \text{ ab}^{-1} + \text{LHCb} 7 \text{ fb}^{-1}$

New physics in B^0_d mixing

• 95% CL: NP \lesssim (many \times SM) \rightarrow NP \lesssim (0.3 \times SM) \rightarrow NP \lesssim (0.05 \times SM)

$$h \simeq \frac{|C_{ij}|^2}{|V_{ti}^* V_{tj}|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2$$
 — by Stage II: $\Lambda \sim 20 \text{ TeV}$ (tree), $\Lambda \sim 2 \text{ TeV}$ (loop)

• Right sensitivity to be in the ballpark of gluino masses explored at LHC14

New physics in B_s^0 mixing

• 95% CL: NP \lesssim (many \times SM) \rightarrow NP \lesssim (0.3 \times SM) \rightarrow NP < (0.05 \times SM)

- Sensitivity caught up with that in B_d mixing, and will improve comparably (at least)
- Sensitivity in the future will remain comparable; slightly better in B_s do to less SM "background" in SM expectations

New physics in $B_{d,s}$ mixing

• Looking at $B_{d,s}$ mixing simultaneously (Connections to K mixing in $U(2)^3$ flavor models)

• 95% CL: NP \leq (many \times SM) \rightarrow NP \leq (0.3 \times SM) \rightarrow NP < (0.05 \times SM)

Constraining MFV-like scenarios

• MFV:
$$h \equiv h_d e^{2i\sigma_d} = h_s e^{2i\sigma_s} = h_K e^{2i\sigma_K}$$

 $\sigma_d = \sigma_s = \sigma_K = 0 \pmod{\pi/2}$
• Lattice QCD progress
has improved bounds
on MFV substantially
 $2009 \Rightarrow 2009 \Rightarrow 2009$

• Plateau at Stage II: treated future lattice QCD uncertainties as Gaussians, but used Rfit for non-lattice theoretical inputs: m_t , $\eta_{cc,ct,tt}$, η_B

New physics in K^0 mixing

- Only ϵ_K constraint two "chimneys"
- Precision lattice QCD calculation of Δm_K would cut those off
- In some classes of models can combine with $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

K^0 mixing, lattice QCD, other prospects

- How to best use anticipated precise lattice QCD calculation of Δm_K in the SM?
 - Directly constrain $|h_K|$
 - Constrain η_{cc} , which is the largest uncertainty in ϵ_K

[Buras and Girrbach, 1304.6835]

Hard to connect lattice QCD to SD/LD separation in dim.reg. (remove λ_c vs. λ_u)

[what we did]

[Christ, Izubuchi, Sachrajda, Soni, Yu, 1212.5931]

 $U(2)^3$ flavor models

• Minimal $U(2)^3$: $h_B \equiv h_d = h_s$, $\sigma_B \equiv \sigma_d = \sigma_s$

Can such fits discover NP?

Interesting to see if NP can be discovered and not only constrained

Any assumption about future NP signals is ad hoc — simplest scenario: assume all future (Stage II) experimental results correspond to the current best-fit values of $\bar{\rho}$, $\bar{\eta}$, $h_{d,s}$, $\sigma_{d,s}$

$|V_{ub}|, B ightarrow ho \ell ar{ u}$, right-handed currents

The $|V_{ub}|$ saga continues...(?)

- Tensions among $|V_{ub}|$ measurements Old story, still don't know the resolution
- Too early to conclude:
 - Inclusive measuerment can improve a lot
 - Exclusive done better with full reco
 - Will have more robust lattice QCD results
- A BSM possibility:

$$\mathcal{L} = -rac{4G_F}{\sqrt{2}} V^L_{ub} \left(ar{u} \gamma_\mu P_L b + \epsilon_R ar{u} \gamma_\mu P_R b
ight) (ar{
u_\ell} \gamma^\mu P_L \ell)$$

Can we construct observables which give "more vertical" constraints?

Decay	$ V_{ub} imes 10^4$	adm.
$B o \pi \ell \bar{\nu}_\ell$	3.23 ± 0.30	$(1+\epsilon_R)$
$B \to X_u \ell \bar{\nu}_\ell$	4.39 ± 0.21	$\left(1+\epsilon_R^2 ight)$
$B \to \tau \bar{\nu}_{\tau}$	4.32 ± 0.42	$(1-\epsilon_R)$

• NB: Cleanest $|V_{ub}|$ I know, only isospin, $\mathcal{B}(B_u \to \ell \bar{\nu})/\mathcal{B}(B_d \to \mu^+ \mu^-)$ — run LHCb @ 33 TeV

SIMBA — advantages of a global fit

- Optimally combine all information, $B \to X_u \ell \bar{\nu}$, $B \to X_s \gamma$, etc. Consistently treat uncertainties and their correlations (exp, theo, parameters)
- Simultaneously determine:
 - Overall normalization: $\mathcal{B}(B \to X_s \gamma)$, $|V_{ub}|$
 - Parameters: m_b , shape function(s)
- Utilize all measurements:
 - Different $B \to X_s \gamma$ spectra, or partial rates
 - Different $B \to X_u \ell \bar{\nu}$ spectra, or partial rates
 - Include other constraints on m_b , λ_1 , etc.
 - Eventually use or predict $B \to X_s \ell^+ \ell^-$
- Same strategy as for $|V_{cb}|$, just a lot more complicated...

$B ightarrow ho \ell ar{ u}$ kinematics

• Same description as in familiar $B \to VV$ or $B \to K^* \ell^+ \ell^-$ decays

Integrate over χ and some q^2 range, study many variables, incl. those in $K^*\ell^+\ell^-$

• The q^2 range is affected by limitations of our knowledge of the form factors

Semileptonic $B ightarrow \pi, ho$ form factors

• At leading order in Λ/Q , to all orders in α_s , two contributions at $q^2 \ll m_B^2$: soft form factor & hard scattering (Separation scheme dependent; $Q = E, m_b$, omit μ 's) [Beneke & Feldmann; Bauer, Pirjol, Stewart; Becher, Hill, Lange, Neubert]

$$F(Q) = C_i(Q) \zeta_i(Q) + \frac{m_B f_B f_M}{4E^2} \int dz dx dk_+ T(z, Q) J(z, x, k_+, Q) \phi_M(x) \phi_B(k_+)$$

• Symmetries \Rightarrow nonfactorizable (1st) term obey form factor relations [Charles *et al.*] $3 B \rightarrow P$ and $7 B \rightarrow V$ form factors related to 3 universal functions

- Relative size? QCDF: 2nd $\sim \alpha_s \times (1st)$ SCET: 1st $\sim 2nd$
- Whether first term factorizes (involves $\alpha_s(\mu_i)$, as 2nd term does) involves same physics issues as hard scattering, annihilation, etc., contributions to $B \rightarrow M_1 M_2$

SM and NP distributions

Very different distributions for left- and right-handed interactions (white > black)

• Choose contour (red curve) to maximize sensitivity to ϵ_R in S = (A - B)/(A + B)

$B \to \rho$ form factors

- Unfortunately not much available from lattice QCD yet (harder than $B \rightarrow \pi$)
- Use analyticity constraints / parameterization Same issues for $B \rightarrow K^*$ form factors...

[Bharucha, Feldmann, Wick, arXiv:1004.3249] [Hambrock, Hiller, Schacht, Zwicky, arXiv:1308.4379]

More assumptions / complications than for $B \to \pi$ case (Γ_{ρ} , sub-threshold resonances in scattering channel, etc.)

Use light-cone sum rule predictions, assessing correlations is tricky

Demo fit for Belle II

• VERY preliminary

Demo fit for Belle II

• VERY preliminary

Conclusions

- New physics in most FCNC transitions may still be $\sim\!20\%$ of the SM or more
- Neutral meson mixings will remain special, sensitive to some of the highest scales

Couplingo	NP loop	Scales (in TeV) probed by	
Couplings	order	B_d mixing	B_{s} mixing
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$ C_{ij} = 1$	tree level	2×10^3	5×10^2
(no hierarchy)	one loop	2×10^2	40

- Progress in $b \rightarrow u$ will be important to constrain NP (expect significant progress)
- There must be new and unexpected ways to utilize:

 $\frac{(\text{LHCb upgrade})}{(\text{LHCb } 1 \, {\rm fb}^{-1})} \sim \frac{(\text{Belle II data set})}{(\text{Belle data set})} \sim \frac{(2009 \text{ BaBar data set})}{(1999 \text{ CLEO data set})} \sim 50$

... beyond $\sqrt[4]{50} \sim 2.5$ increase in sensitivity to higher mass scales

Backup slides

Status of the CKM fit

- The level of agreement between the measurements is often misinterpreted
- Allowed region is much larger if NP is included in the fit, more parameters, which changes the fit completely
- $\mathcal{O}(20\%)$ NP contributions to most loop processes (FCNS) are still allowed

Need experimental precision and theoretical cleanliness to increase NP sensitivity

