New Physics with $B_{s} \rightarrow V V$

Bhubanjyoti Bhattacharya

Université de Montréal

October 16, 2013

Implications of LHCb measurements and Future Prospects,
14-16 October, 2013
CERN

Talk based on arXiv:1306.1911 with A. Datta, M. Duraisamy and
D. London

Background

- Spin 0 meson $\left(B_{s}\right) \rightarrow 2$ Spin 1 mesons (Vectors)
- Relative angular momentum : $L_{V V}=0,1,2$
- Vectors identified through their decay modes: Eg. $\phi \rightarrow K \bar{K}$
- Angular analysis to separate out :
1.) Functions of helicity angles θ_{1}, θ_{2}, and ϕ
2.) Observables that are dependent on time

The decay amplitude and angular analysis

- Penguin-dominated decays: Eg. $B_{s} \rightarrow \phi \phi, K^{*} \bar{K}^{*}$

Amplitude suppressed in the SM. Good place for new-physics searches.

- Vectors detected via hadronic decay come with scalar backgrounds

Eg. $\phi \rightarrow K^{+} K^{-}$, Background Scalar: $K^{+} K^{-}$s-wave

- Additional contributions to Amplitude :
$A\left(B \rightarrow V_{1} V_{2}\right)+A\left(B \rightarrow V_{1} S_{2}\right)+A\left(B \rightarrow S_{1} V_{2}\right)+A\left(B \rightarrow S_{1} S_{2}\right)$
- 3 helicity amplitudes in $B \rightarrow V V$: 1 Longitudinal and 2 transverse
- Scalar background adds additional helicities: (SV, VS, SS) Identical final-state vector mesons : 2 additional helicities ($V S=-S V$)
Distinguishable final-state vector mesons: 3 additional helicities

The differential decay rate

- Most general amplitude has the following terms:

$$
\begin{aligned}
& A_{V V}: A_{0} \cos \theta_{1} \cos \theta_{2}+\frac{A_{\|}}{\sqrt{2}} \sin \theta_{1} \sin \theta_{2} \cos \phi+i \frac{A_{\perp}}{\sqrt{2}} \sin \theta_{1} \sin \theta_{2} \sin \phi \\
& A_{V S}:-\frac{A_{+}^{(V S)}}{\sqrt{6}}\left(\cos \theta_{1}-\cos \theta_{2}\right)-\frac{A_{-}^{(V S)}}{\sqrt{6}}\left(\cos \theta_{1}+\cos \theta_{2}\right) \\
& A_{S S}:-\frac{A_{s}}{3} ; \quad A_{ \pm}^{(V S)}=\left(A_{V S} \pm A_{S V}\right) / \sqrt{2} \quad \text { If } V_{1}=V_{2} \text { then } A_{+}^{(V S)} \equiv 0
\end{aligned}
$$

- The differential decay rate is then :

$$
\frac{d^{4} \Gamma}{d t d \vec{\Omega}} \propto\left|A_{V V}+A_{V S}+A_{S S}\right|^{2}
$$

(Time-dependent tagged analysis)

- Angular distribution with six helicities: $\left({ }^{6} \mathrm{C}_{2}+6=21\right)$

$$
\frac{d^{4} \Gamma}{d t d \vec{\Omega}}=\frac{9}{8 \pi} \sum_{i=1}^{21} K_{i}(t) X_{i}\left(\theta_{1}, \theta_{2}, \phi\right)
$$

where $K_{i}(t)=\frac{1}{2} e^{-\Gamma t}\left[a_{i} \cosh \left(\frac{\Delta \Gamma}{2} t\right)+c_{i} \cos (\Delta m t)\right.$

$$
\left.+b_{i} \sinh \left(\frac{\Delta \Gamma}{2} t\right)+d_{i} \sin (\Delta m t)\right]
$$

- Appropriately integrate over phase space to extract K_{i} 's using :

$$
\int X_{i}(\vec{\Omega}) f_{j}(\vec{\Omega}) d \vec{\omega}=\delta_{i j}
$$

- Note: It is not possible to distinguish between $\operatorname{Re}\left[A_{S} A_{0}^{*}\right]$ and $\left|A_{+}^{(V S)}\right|^{2}$ $-\left|A_{-}^{(V S)}\right|^{2}$ since the angular function is the same : $X \propto \cos \theta_{1} \cos \theta_{2}$
- Time-dependent fit to K_{i} 's give the observables: $a_{i}, b_{i}, c_{i}, d_{i}$

Physics from the angular analysis

- $a_{i}, b_{i}, c_{i}, d_{i}$ are functions of 12 magnitudes $\left|A_{h}\right|,\left|\bar{A}_{h}\right|, 11$ relative phases and the $B_{s}-\bar{B}_{s}$ mixing phase $\left(\phi_{M}\right)$: Hence they are not all independent
- Construction of observables is model-independent. However, several CP-violating observables are expected to be small in the SM. Large values of these can indicate new physics in B_{s} decay
- Examples of CP-violating observables : $\left(\phi_{M}=-2 \operatorname{Arg}\left(V_{t b}^{*} V_{t s}\right)\right)$ Direct CP Asymmetry $\left(c_{i}, a_{i}\right): \operatorname{Re}\left[A_{i} A_{j}^{*}-\bar{A}_{i} \bar{A}_{j}^{*}\right] \quad i=j \Rightarrow|A|^{2}-|\bar{A}|^{2}$ Indirect CP Asymmetry $\left(d_{i}, b_{i}\right): \operatorname{Im}\left[\left(A_{i}^{*} \bar{A}_{j}-\bar{A}_{i} A_{j}^{*}\right) e^{-i \phi_{M}}\right]$ True triple product $\left(a_{i}, c_{12}\right): \operatorname{Im}\left[A_{\perp} A_{i}^{*}-\bar{A}_{\perp} \bar{A}_{i}^{*}\right]$ Mixing-induced triple product $\left(b_{i}, d_{12}\right): \operatorname{Im}\left[\left(\bar{A}_{\perp} A_{i}^{*}+A_{\perp}^{*} \bar{A}_{i}\right) e^{-i \phi_{M}}\right]$

Within the Standard Model

- Amplitude within the SM : (Loosely : γ comes from phase of $V_{u b}^{*}$)

$$
A_{h}=e^{-i \phi_{M} / 2}\left[P_{t c, h}^{\prime} e^{i \delta_{t c, h}}+e^{i\left(\gamma+\phi_{M} / 2\right)} P_{u c, h}^{\prime} e^{i \delta_{u c, h}}\right]
$$

- Leading order in Wolfenstein Parameter $\lambda: P_{t c, h}^{\prime} \propto\left|V_{t b}^{*} V_{t s}\right| \sim \mathcal{O}\left(\lambda^{2}\right)$
- Next-to-leading order in $\lambda: P_{u c, h}^{\prime} \propto\left|V_{u b}^{*} V_{u s}\right| \sim \mathcal{O}\left(\lambda^{4}\right)$
- $R_{h}=P_{u c, h}^{\prime} / P_{t c, h}^{\prime} \sim \mathcal{O}\left(\lambda^{2}\right)$: non-negligible for ϕ_{M} measurement
- Observables : $A_{i} A_{j}^{*}$ or $A_{i}^{*} \bar{A}_{j} e^{-i \phi_{M}}$
- $a_{i}, b_{i}, c_{i}, d_{i}$ are insensitive to ϕ_{M} (leading order)!
\Rightarrow Tree-dominated decays (Eg. $B_{s} \rightarrow J / \psi \phi$) for NP in $B_{s}-\bar{B}_{s}$ mixing

$$
\phi_{s}=0.07 \pm 0.09(\text { stat }) \pm 0.01 \text { (syst) } \mathrm{rad}
$$

LHCb in Phys. Rev. D (arXiv:1304.2600)

Flavor SU(3)

- Relate $\bar{b} \rightarrow \bar{s}$ decay modes to $\bar{b} \rightarrow \bar{d}$ decay modes using Flavor SU(3) Fleischer and Gronau, arXiv:0709.4013, in PLB
- $B_{s} \rightarrow \phi \phi$ with $B_{s} \rightarrow \phi \bar{K}^{* 0} ; B_{s} \rightarrow K^{* 0} \bar{K}^{* 0}$ with $B_{d} \rightarrow K^{* 0} \bar{K}^{* 0}$
- Usual SU(3) breaking corrections $\sim m_{s} / \Lambda_{Q C D}$: Large $\operatorname{SU}(3)$ breaking in decay rate comparisons
- Ratios of hadronic amplitudes involve cancellation of certain SU(3)breaking corrections
- Effect of $\operatorname{SU}(3)$ breaking is further suppressed by the new-physics scale
- Extract NP amplitudes and strong and weak phases

NP in B_{s} decay

- NP may be comparable or larger than sub-dominant SM term
- Amplitude with (large) NP in the decay:

$$
A_{h}=P_{t c, h} e^{i \delta_{t c, h}}\left(1+R_{h}^{N P} e^{i \phi^{N P}} e^{i \Delta_{h}^{N P}}\right)
$$

- $\Delta_{h}^{N P}$ is the difference between NP strong phase and $\delta_{t c, h}$

NP strong phases may themselves be helicity dependent

- $R_{h}^{N P}=P^{N P, h} / P_{t c, h}: R_{h}^{N P} \gg R_{h}^{S M} \sim \mathcal{O}\left(\lambda^{2}\right) \Rightarrow$ New Physics
- CP violation appears due to the interference of two terms
\Rightarrow CP-violating observables are proportional to R_{h} !
Look for large CPV (direct, indirect, TP) for signals of NP in B_{s} decay
- Two identical vectors in the final state :

5 helicity amplitudes ($3 \mathrm{VV}, S S, V S_{-}$)

- Studied by LHCb in detail : arXiv:1303.7125 (published in PRL)
- SM form for each helicity amplitude A_{h} :

$$
A_{h}=P_{t c, h}^{\prime} e^{i \delta_{t c, h}}\left[1+R_{h} e^{i\left(\gamma+\phi_{M} / 2\right)} e^{i \Delta_{h}}\right]
$$

- Corresponding to $\left|A_{0}(t)\right|^{2}$, to leading order in R_{0} :

$$
\begin{aligned}
& c_{1} \approx-2 R_{0} \sin \Delta_{0} \sin \left(\gamma+\phi_{M} / 2\right) \\
& b_{1} \approx-1-2 R_{0} \cos \Delta_{0} \cos \left(\gamma+\phi_{M} / 2\right) \\
& d_{1} \approx-2 R_{0} \cos \Delta_{0} \sin \left(\gamma+\phi_{M} / 2\right)
\end{aligned}
$$

- Assuming $c_{1}=0$ from the get go \Rightarrow assuming $\Delta_{0}=0$
- Strong-phase difference between $P_{u c, h}$ and $P_{t c, h}(\mathrm{SM})$ can be large

$B_{s} \rightarrow \phi \phi$

- Alternatively extract weak phase ϕ using $b_{1}=-\cos \phi$ and $d_{1}=\sin \phi$
- A small ϕ from b_{1} and d_{1} is really due to a small R_{h}
- In the SM $R_{h} \sim \mathcal{O}\left(\lambda^{2}\right)$
- If the measured ϕ is an order of magnitude larger than expected $\Rightarrow N P$
- What if NP effects are tiny?

Small deviations from SM can be due to neglect of Δ_{h}

- Small NP effects are best detected through individual CPV observables!

$B_{s} \rightarrow K^{* 0} \bar{K}^{* 0}$

- Final state has distinguishable vectors : 6 helicity amplitudes
- The same final state is accessible to both B_{s} and \bar{B}_{s}
- $K^{* 0}(890)$ is identified through its decay to $K^{+} \pi^{-}$
- Scalar background : $K^{* 0}(1430)$ (Large width)
- Time-dependent tagged analysis could be difficult
- Interesting physics even in untagged time-dependent analysis

$$
\underline{B}_{s} \rightarrow K^{* 0} \bar{K}^{* 0}
$$

- Untagged analysis : angular distribution with same angular functions
- CP conjugate K_{i} 's can be obtained from :

$$
\begin{aligned}
& \begin{array}{r}
\bar{K}_{i}(t)=\frac{1}{2} e^{-\Gamma t}\left[\bar{a}_{i} \cosh \left(\frac{\Delta \Gamma}{2} t\right)+\bar{c}_{i} \cos (\Delta m t)\right. \\
\\
\left.+\bar{b}_{i} \sinh \left(\frac{\Delta \Gamma}{2} t\right)+\bar{d}_{i} \sin (\Delta m t)\right]
\end{array} \\
& \text { where } \quad \bar{a}_{i}=a_{i}, \quad \bar{b}_{i}=b_{i}, \quad \bar{c}_{i}=-c_{i}, \quad \bar{d}_{i}=-d_{i}
\end{aligned}
$$

- Asymmetric integration over helicity angles obtain :

$$
K_{i}^{\text {untagged }}=K_{i}+\bar{K}_{i}=e^{-\Gamma t}\left[a_{i} \cosh \left(\frac{\Delta \Gamma}{2} t\right)+b_{i} \sinh \left(\frac{\Delta \Gamma}{2} t\right)\right]
$$

- Observables a_{i} and b_{i} from time-dependent fit to $K_{i}^{\text {untagged }}$

$B_{s} \rightarrow K^{* 0} \bar{K}^{* 0}$

- Triple product $\left(A_{\perp}\right)$ and $A_{+}^{(V S)}$ are CP-odd amplitudes
- CP-violating terms are the result of interference between CP-odd and CP-even amplitudes
- NP searches can measure CP-Violating observables:

Triple products : $a_{5}=\operatorname{Im}\left[A_{\perp} A_{0}^{*}-\bar{A}_{\perp} \bar{A}_{0}^{*}\right]$

$$
b_{5}=\operatorname{Im}\left[\left(\bar{A}_{\perp} A_{0}^{*}+A_{\perp}^{*} \bar{A}_{0}\right) e^{-i \phi_{M}}\right]
$$

Direct CP Asymmetries : $a_{8}=\operatorname{Re}\left[A_{+}^{(V S)} A_{S}^{*}-\bar{A}_{+}^{(V S)} \bar{A}_{S}^{*}\right]$
Indirect CP Asymmetries : $b_{8}=\operatorname{Re}\left[\left(\bar{A}_{+}^{(V S)} A_{S}^{*}-A_{+}^{(V S) *} \bar{A}_{S}\right) e^{-i \phi_{M}}\right]$

New-Physics Scenarios

- Typical effective NP operator: $H_{A B}^{N P} \sim\left(\bar{b} \gamma_{A} s\right)\left(\bar{q} \gamma_{B} q\right)$ where A, B stands for left(L) or right(R)
- Expansion parameters: $\Lambda_{Q C D} / m_{B}$ and $R_{h}^{N P}$
- RR and LL operators only contribute to $A_{\|}, A_{\perp}$, and $A_{S S}$
\Rightarrow Direct CPV involving $A^{(V S)_{+}}$and $A^{(V S)_{-}}$suppressed
Reasonable triple products and mixing-induced TP's
- RL and LR operators don't contribute to VS helicities
\Rightarrow Triple products involving $A_{\|}$and A_{\perp} are small
Other CP violating observables are reasonable, including direct CPV
- $a_{i}, b_{i}, c_{i}, d_{i}$ can help distinguish between different NP scenarios

Conclusions and Outlook

- Interesting $B \rightarrow V V$ decay modes discussed
- Penguin-dominated decays present an excellent place to look for New Physics in B_{s} decay
- Large new physics in $B_{s}-\bar{B}_{s}$ mixing can be identified through weakphase measurements in $B_{s} \rightarrow \phi \phi$
- Model-independent approach is better in looking for small New Physics
- Several CP-violating observables in penguin dominated $B_{s} \rightarrow V V$ decays discussed. These may eventually help identify certain types of effective-NP operators
- Plenty to look forward to with more data and analysis from LHCb

Amplitude construction

- $A(B \rightarrow V V)=N \sum_{j=-1}^{1} A_{j}^{V V} Y_{1}^{-j}\left(\theta_{1},-\phi\right) Y_{1}^{j}\left(\pi-\theta_{2}, 0\right)$
- $A(B \rightarrow V S)=N A_{0}^{V S} Y_{1}^{0}\left(\theta_{1},-\phi\right) Y_{0}^{0}\left(\pi-\theta_{2}, 0\right)$
- $A(B \rightarrow V S)=N A_{0}^{S V} Y_{0}^{0}\left(\theta_{1},-\phi\right) Y_{1}^{0}\left(\pi-\theta_{2}, 0\right)$
- $A(B \rightarrow S S)=N A_{0}^{S S} Y_{0}^{0}\left(\theta_{1},-\phi\right) Y_{0}^{0}\left(\pi-\theta_{2}, 0\right)$
- Spherical harmonics:
$Y_{1}^{m}(\theta, \phi) \propto \cos \theta e^{i m \phi}$
Normalization chosen such that:
$Y_{0}^{0}(\theta, \phi) \propto$ constant

$$
\frac{d \Gamma}{d t}=\sum_{h}\left|A_{h}\right|^{2}
$$

Angular functions

Angular distribution for $B \rightarrow V V$

n	$K_{n}(t)$	Prefactor	$X_{n}\left(\theta_{1}, \theta_{2}, \phi\right)$	
1	$\left\|A_{0}(t)\right\|^{2}$	1	$\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}$	
2	$\left\|A_{\\|}(t)\right\|^{2}$	$1 / 2$	$\sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos ^{2} \phi$	
3	$\left\|A_{\perp}(t)\right\|^{2}$	$1 / 2$	$\sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2} \phi$	
4	$\operatorname{Re}\left[A_{\\|}(t) A_{0}^{*}(t)\right]$	$1 / 2 \sqrt{2}$	$\sin 2 \theta_{1} \sin 2 \theta_{2} \cos \phi$	
5	$\operatorname{Im}\left[A_{\perp}(t) A_{0}^{*}(t)\right]$	$-1 / 2 \sqrt{2}$	$\sin 2 \theta_{1} \sin 2 \theta_{2} \sin \phi$	
6	$\operatorname{Im}\left[A_{\perp}(t) A_{\\|}^{*}(t)\right]$	$-1 / 2$	$\sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi$	

For a complete list including scalar backgrounds : arXiv:1306.1911

Observables

Observables to be extracted from a time-dependent fit in $B \rightarrow V V$

n	a_{n}	c_{n}	b_{n}	d_{n}						
			Re	Im						
1	$\left\|A_{0}\right\|^{2}+\left\|\bar{A}_{0}\right\|^{2}$	$\left\|A_{0}\right\|^{2}-\left\|\bar{A}_{0}\right\|^{2}$	$-A_{0}^{*} \bar{A}_{0} e^{-i \phi_{M}}$							
2	$\left\|A_{\\|}\right\|^{2}+\left\|\bar{A}_{\\|}\right\|^{2}$	$\left\|A_{\\|}\right\|^{2}-\left\|\bar{A}_{\\|}\right\|^{2}$	$-A_{\\|}^{*} \bar{A}_{\\|} e^{-i \phi_{M}}$							
3	$\left\|A_{\perp}\right\|^{2}+\left\|\bar{A}_{\perp}\right\|^{2}$	$\left\|A_{\perp}\right\|^{2}-\left\|\bar{A}_{\perp}\right\|^{2}$	$A_{\perp}^{*} \bar{A}_{\perp} e^{-i \phi_{M}}$							
4	$\operatorname{Re}\left[A_{\\|} A_{0}^{*}+\bar{A}_{\\|} \bar{A}_{0}^{*}\right]$	$\operatorname{Re}\left[A_{\\|} A_{0}^{*}-\bar{A}_{\\|} \bar{A}_{0}^{*}\right]$	$-\left(\bar{A}_{\\|} A_{0}^{*}+A_{\\|}^{*} \bar{A}_{0}\right) e^{-i \phi_{M}}$							
5	$\operatorname{Im}\left[A_{\perp} A_{0}^{*}-\bar{A}_{\perp} \bar{A}_{0}^{*}\right]$	$\operatorname{Im}\left[A_{\perp} A_{0}^{*}+\bar{A}_{\perp} \bar{A}_{0}^{*}\right]$	$-i\left(\bar{A}_{\perp} A_{0}^{*}+A_{\perp}^{*} \bar{A}_{0}\right) e^{-i \phi_{M}}$							
6	$\operatorname{Im}\left[A_{\perp} A_{0}^{*}-\bar{A}_{\perp} \bar{A}_{0}^{*}\right]$	$\operatorname{Im}\left[A_{\perp} A_{0}^{*}+\bar{A}_{\perp} \bar{A}_{0}^{*}\right]$	$-i\left(\bar{A}_{\perp} A_{\\|}^{*}+A_{\perp}^{*} \bar{A}_{\\|}\right) e^{-i \phi_{M}}$							

For a complete list including scalar backgrounds : arXiv:1306.1911

