New Physics with $B_s \rightarrow VV$

Bhubanjyoti Bhattacharya

Université de Montréal

October 16, 2013

Implications of LHCb measurements and Future Prospects, 14 - 16 October, 2013 CERN

Talk based on arXiv:1306.1911 with A. Datta, M. Duraisamy and D. London

Bhubanjyoti Bhattacharya (UdeM)

New Physics with $B_s \rightarrow VV$

October 16, 2013 1 / 16

Background

Background

- Spin 0 meson $(B_s) \rightarrow 2$ Spin 1 mesons (Vectors)
- Relative angular momentum : $L_{VV} = 0, 1, 2$
- Vectors identified through their decay modes : Eg. $\phi \to K\bar{K}$
- Angular analysis to separate out :
 - 1.) Functions of helicity angles θ_1, θ_2 , and ϕ
 - 2.) Observables that are dependent on time

The decay amplitude and angular analysis

- Penguin-dominated decays : Eg. B_s → φφ, K^{*}K^{*}
 Amplitude suppressed in the SM. Good place for new-physics searches.
- Vectors detected via hadronic decay come with scalar backgrounds Eg. $\phi \rightarrow K^+K^-$, Background Scalar : K^+K^- s-wave
- Additional contributions to Amplitude : $A(B \rightarrow V_1 V_2) + A(B \rightarrow V_1 S_2) + A(B \rightarrow S_1 V_2) + A(B \rightarrow S_1 S_2)$
- 3 helicity amplitudes in $B \rightarrow VV$: 1 Longitudinal and 2 transverse
- Scalar background adds additional helicities : (SV, VS, SS)Identical final-state vector mesons : 2 additional helicities (VS = -SV)Distinguishable final-state vector mesons : 3 additional helicities

The differential decay rate

• Most general amplitude has the following terms :

$$\begin{aligned} A_{VV} &: A_0 \cos \theta_1 \cos \theta_2 + \frac{A_{\parallel}}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \cos \phi + i \frac{A_{\perp}}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \sin \phi \\ A_{VS} &: -\frac{A_+^{(VS)}}{\sqrt{6}} (\cos \theta_1 - \cos \theta_2) - \frac{A_-^{(VS)}}{\sqrt{6}} (\cos \theta_1 + \cos \theta_2) \\ A_{SS} &: -\frac{A_s}{3}; \\ A_{\pm}^{(VS)} &= (A_{VS} \pm A_{SV})/\sqrt{2} \quad \text{If } V_1 = V_2 \text{ then } A_+^{(VS)} \equiv 0 \end{aligned}$$

• The differential decay rate is then :

$$rac{d^4 \Gamma}{dt \; dec\Omega} \propto |A_{VV}+A_{VS}+A_{SS}|^2$$

(Time-dependent tagged analysis)

<**A**□ ► < **∃** ► <

• Angular distribution with six helicities : $({}^{6}C_{2} + 6 = 21)$

$$\frac{d^4\Gamma}{dt\ d\vec{\Omega}} = \frac{9}{8\pi} \sum_{i=1}^{21} \kappa_i(t) X_i(\theta_1, \theta_2, \phi)$$

where
$$K_i(t) = \frac{1}{2} e^{-\Gamma t} \left[a_i \cosh\left(\frac{\Delta\Gamma}{2}t\right) + c_i \cos(\Delta m t) + b_i \sinh\left(\frac{\Delta\Gamma}{2}t\right) + d_i \sin(\Delta m t) \right]$$

- Appropriately integrate over phase space to extract K_i 's using : $\int X_i(\vec{\Omega}) f_j(\vec{\Omega}) d\vec{\omega} = \delta_{ij}$
- Note: It is not possible to distinguish between $\operatorname{Re}[A_{S}A_{0}^{*}]$ and $|A_{+}^{(VS)}|^{2}$ - $|A_{-}^{(VS)}|^{2}$ since the angular function is the same : $X \propto \cos \theta_{1} \cos \theta_{2}$
- Time-dependent fit to K_i 's give the observables : a_i, b_i, c_i, d_i

Physics from the angular analysis

- a_i, b_i, c_i, d_i are functions of 12 magnitudes $|A_h|, |\bar{A}_h|$, 11 relative phases and the $B_s - \bar{B}_s$ mixing phase (ϕ_M) : Hence they are not all independent
- Construction of observables is model-independent. However, several CP-violating observables are expected to be small in the SM. Large values of these can indicate new physics in B_s decay
- Examples of CP-violating observables : $(\phi_M = -2\operatorname{Arg}(V_{tb}^*V_{ts}))$ Direct CP Asymmetry (c_i, a_i) : $\operatorname{Re}[A_iA_j^* - \bar{A}_i\bar{A}_j^*]$ $i = j \Rightarrow |A|^2 - |\bar{A}|^2$ Indirect CP Asymmetry (d_i, b_i) : $\operatorname{Im}\left[(A_i^*\bar{A}_j - \bar{A}_iA_j^*)e^{-i\phi_M}\right]$ True triple product (a_i, c_{12}) : $\operatorname{Im}\left[A_{\perp}A_i^* - \bar{A}_{\perp}\bar{A}_i^*\right]$ Mixing-induced triple product (b_i, d_{12}) : $\operatorname{Im}\left[(\bar{A}_{\perp}A_i^* + A_{\perp}^*\bar{A}_i)e^{-i\phi_M}\right]$

(日) (周) (三) (三)

Within the Standard Model

• Amplitude within the SM : (Loosely : γ comes from phase of V_{ub}^*)

$$A_h = e^{-i\phi_M/2} \left[P'_{tc,h} e^{i\delta_{tc,h}} + e^{i(\gamma+\phi_M/2)} P'_{uc,h} e^{i\delta_{uc,h}} \right]$$

- Leading order in Wolfenstein Parameter $\lambda : P'_{tc,h} \propto |V^*_{tb}V_{ts}| \sim O(\lambda^2)$
- Next-to-leading order in λ : $P'_{uc,h} \propto |V^*_{ub}V_{us}| \sim \mathcal{O}(\lambda^4)$
- $R_h = P'_{uc,h}/P'_{tc,h} \sim O(\lambda^2)$: non-negligible for ϕ_M measurement

• Observables :
$$A_i A_j^*$$
 or $A_i^* \bar{A}_j e^{-i\phi_M}$

a_i, b_i, c_i, d_i are insensitive to φ_M (leading order)!
 ⇒ Tree-dominated decays (Eg. B_s → J/ψ φ) for NP in B_s - B̄_s mixing
 φ_s = 0.07 ± 0.09(stat) ± 0.01(syst) rad
 LHCb in Phys. Rev. D (arXiv:1304.2600)

Bhubanjyoti Bhattacharya (UdeM)

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Flavor SU(3)

- Relate $\bar{b} \rightarrow \bar{s}$ decay modes to $\bar{b} \rightarrow \bar{d}$ decay modes using Flavor SU(3) Fleischer and Gronau, arXiv:0709.4013, in PLB
- $B_s \to \phi \phi$ with $B_s \to \phi \bar{K}^{*0}$; $B_s \to K^{*0} \bar{K}^{*0}$ with $B_d \to K^{*0} \bar{K}^{*0}$
- Usual SU(3) breaking corrections $\sim m_s/\Lambda_{\rm QCD}$: Large SU(3) breaking in decay rate comparisons
- Ratios of hadronic amplitudes involve cancellation of certain SU(3)breaking corrections
- Effect of SU(3) breaking is further suppressed by the new-physics scale
- Extract NP amplitudes and strong and weak phases

イロト イポト イヨト イヨト 二日

NP in B_s decay

- NP may be comparable or larger than sub-dominant SM term
- Amplitude with (large) NP in the decay :

$$A_{h} = P_{tc,h} e^{i\delta_{tc,h}} \left(1 + R_{h}^{NP} e^{i\phi^{NP}} e^{i\Delta_{h}^{NP}} \right)$$

• Δ_h^{NP} is the difference between NP strong phase and $\delta_{tc,h}$ NP strong phases may themselves be helicity dependent

•
$$R_h^{NP} = P^{NP,h}/P_{tc,h}$$
: $R_h^{NP} \gg R_h^{SM} \sim \mathcal{O}(\lambda^2) \Rightarrow$ New Physics

CP violation appears due to the interference of two terms
 ⇒ CP-violating observables are proportional to R_h!
 Look for large CPV (direct, indirect, TP) for signals of NP in B_s decay

$B_s \to \phi \phi$

- Two identical vectors in the final state : 5 helicity amplitudes (3VV, SS, VS_)
- Studied by LHCb in detail : arXiv:1303.7125 (published in PRL)
- SM form for each helicity amplitude A_h :

$$A_h = P'_{tc,h} e^{i\delta_{tc,h}} \left[1 + R_h e^{i(\gamma + \phi_M/2)} e^{i\Delta_h} \right]$$

• Corresponding to $|A_0(t)|^2$, to leading order in R_0 :

 $c_1 \approx -2 R_0 \sin \Delta_0 \sin(\gamma + \phi_M/2)$ $b_1 \approx -1 - 2 R_0 \cos \Delta_0 \cos(\gamma + \phi_M/2)$ $d_1 \approx -2 R_0 \cos \Delta_0 \sin(\gamma + \phi_M/2)$

• Assuming $c_1 = 0$ from the get go \Rightarrow assuming $\Delta_0 = 0$

• Strong-phase difference between $P_{uc,h}$ and $P_{tc,h}$ (SM) can be large

10 / 16

$$B_s \to \phi \phi$$

- Alternatively extract weak phase ϕ using $b_1 = -\cos\phi$ and $d_1 = \sin\phi$
- A small ϕ from b_1 and d_1 is really due to a small R_h
- In the SM $R_h \sim \mathcal{O}(\lambda^2)$
- If the measured ϕ is an order of magnitude larger than expected \Rightarrow NP
- What if NP effects are tiny?

Small deviations from SM can be due to neglect of Δ_h

• Small NP effects are best detected through individual CPV observables!

 $B_s
ightarrow K^{*0} ar{K}^{*0}$

- Final state has distinguishable vectors : 6 helicity amplitudes
- The same final state is accessible to both B_s and \bar{B}_s
- $K^{*0}(890)$ is identified through its decay to $K^+\pi^-$
- Scalar background : $K^{*0}(1430)$ (Large width)
- Time-dependent tagged analysis could be difficult
- Interesting physics even in untagged time-dependent analysis

$B_s ightarrow K^{*0} ar{K}^{*0}$

- Untagged analysis : angular distribution with same angular functions
- CP conjugate K_i 's can be obtained from :

$$\overline{K}_{i}(t) = \frac{1}{2} e^{-\Gamma t} \left[\overline{a}_{i} \cosh\left(\frac{\Delta\Gamma}{2}t\right) + \overline{c}_{i} \cos(\Delta m t) + \overline{b}_{i} \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \overline{d}_{i} \sin(\Delta m t) \right]$$

where $\overline{a}_i = a_i$, $\overline{b}_i = b_i$, $\overline{c}_i = -c_i$, $\overline{d}_i = -d_i$

• Asymmetric integration over helicity angles obtain :

$$\mathcal{K}_{i}^{\mathrm{untagged}} = \mathcal{K}_{i} + \overline{\mathcal{K}}_{i} = e^{-\Gamma t} \left[a_{i} \cosh\left(\frac{\Delta\Gamma}{2}t\right) + b_{i} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \right]$$

• Observables a_i and b_i from time-dependent fit to $K_i^{\rm untagged}$

$B_s ightarrow K^{*0} ar{K}^{*0}$

- Triple product (A_{\perp}) and $A_{+}^{(VS)}$ are CP-odd amplitudes
- CP-violating terms are the result of interference between CP-odd and CP-even amplitudes
- NP searches can measure CP-Violating observables :

Triple products : $a_5 = \operatorname{Im} \left[A_{\perp} A_0^* - \bar{A}_{\perp} \bar{A}_0^* \right]$ $b_5 = \operatorname{Im} \left[(\bar{A}_{\perp} A_0^* + A_{\perp}^* \bar{A}_0) e^{-i\phi_M} \right]$

Direct CP Asymmetries : $a_8 = \operatorname{Re} \left[A_+^{(VS)} A_5^* - \bar{A}_+^{(VS)} \bar{A}_5^* \right]$

Indirect CP Asymmetries : $b_8 = \operatorname{Re}\left[(\bar{A}^{(VS)}_+ A^*_5 - A^{(VS)*}_+ \bar{A}_S)e^{-i\phi_M}\right]$

New-Physics Scenarios

• Typical effective NP operator :

 $H_{AB}^{NP} \sim (\overline{b} \gamma_A s)(\overline{q} \gamma_B q)$ where A, B stands for left(L) or right(R)

- Expansion parameters : Λ_{QCD}/m_B and R_h^{NP}
- RR and LL operators only contribute to A_{||}, A_⊥, and A_{SS}
 ⇒ Direct CPV involving A^{(VS)+} and A^{(VS)-} suppressed Reasonable triple products and mixing-induced TP's
- RL and LR operators don't contribute to VS helicities
 ⇒ Triple products involving A_{||} and A_⊥ are small
 Other CP violating observables are reasonable, including direct CPV
- a_i, b_i, c_i, d_i can help distinguish between different NP scenarios

15 / 16

Conclusions and Outlook

- Interesting $B \rightarrow VV$ decay modes discussed
- Penguin-dominated decays present an excellent place to look for New Physics in B_s decay
- Large new physics in $B_s \bar{B}_s$ mixing can be identified through weak-phase measurements in $B_s \to \phi \phi$
- Model-independent approach is better in looking for small New Physics
- Several CP-violating observables in penguin dominated $B_s \rightarrow VV$ decays discussed. These may eventually help identify certain types of effective-NP operators
- Plenty to look forward to with more data and analysis from LHCb

イロト 不得 トイヨト イヨト 二日

Amplitude construction

•
$$A(B \to VV) = N \sum_{j=-1}^{1} A_{j}^{VV} Y_{1}^{-j}(\theta_{1}, -\phi) Y_{1}^{j}(\pi - \theta_{2}, 0)$$

• $A(B \to VS) = N A_{0}^{VS} Y_{1}^{0}(\theta_{1}, -\phi) Y_{0}^{0}(\pi - \theta_{2}, 0)$
• $A(B \to VS) = N A_{0}^{SV} Y_{0}^{0}(\theta_{1}, -\phi) Y_{1}^{0}(\pi - \theta_{2}, 0)$
• $A(B \to SS) = N A_{0}^{SS} Y_{0}^{0}(\theta_{1}, -\phi) Y_{0}^{0}(\pi - \theta_{2}, 0)$

• Spherical harmonics :

 $Y_1^m(\theta,\phi) \propto \cos\theta \ e^{im\phi}$ Normalization chosen such that : $Y_0^0(\theta,\phi) \propto ext{constant}$ $\frac{d\Gamma}{dt} = \sum_h |A_h|^2$

Angular functions

Angular distribution for $B \rightarrow VV$

n	$K_n(t)$	Prefactor	$X_n(\theta_1, \theta_2, \phi)$
1	$ A_0(t) ^2$	1	$\cos^2\theta_1\cos^2\theta_2$
2	$ A_{\parallel}(t) ^2$	1/2	$\sin^2\theta_1\sin^2\theta_2\cos^2\phi$
3	$ A_{\perp}(t) ^2$	1/2	$\sin^2\theta_1\sin^2\theta_2\sin^2\phi$
4	${\rm Re}[A_{\parallel}(t)A_0^*(t)]$	$1/2\sqrt{2}$	$\sin 2\theta_1 \sin 2\theta_2 \cos \phi$
5	$\mathrm{Im}[A_{\perp}(t)A_0^*(t)]$	$-1/2\sqrt{2}$	$\sin 2\theta_1 \sin 2\theta_2 \sin \phi$
6	$\operatorname{Im}[A_{\perp}(t)A^*_{\parallel}(t)]$	-1/2	$\sin^2\theta_1\sin^2\theta_2\sin 2\phi$

For a complete list including scalar backgrounds : arXiv:1306.1911

Bhubaniyoti Bhattacharya (UdeM)

18 / 16

Observables

Observables to be extracted from a time-dependent fit in B
ightarrow VV

n	a _n	Cn	b _n	d _n
			Re	Im
1	$ A_0 ^2 + \bar{A}_0 ^2$	$ A_0 ^2 - \bar{A}_0 ^2$	$-A_0^*ar{A}_0e^{-i\phi_M}$	
2	$ A_{\parallel} ^2+ ar{A}_{\parallel} ^2$	$ A_{\parallel} ^2 - ar{A}_{\parallel} ^2$	$-A_{\parallel}^{*}ar{A}_{\parallel}e^{-i\phi_{M}}$	
3	$ A_{\perp} ^2+ ar{A}_{\perp} ^2$	$ A_{\perp} ^2 - ar{A}_{\perp} ^2$	$A_{\perp}^{*}ar{A}_{\perp}e^{-i\phi_{M}}$	
4	$\operatorname{Re}[A_{\parallel}A_{0}^{*}+ar{A}_{\parallel}ar{A}_{0}^{*}]$	$\mathrm{Re}[A_{\parallel}A_0^*-\bar{A}_{\parallel}\bar{A}_0^*]$	$-(ar{A}_\parallel A_0^*+A_\parallel^*ar{A}_0)e^{-i\phi_M}$	
5	$\operatorname{Im}[A_{\perp}A_0^* - \bar{A}_{\perp}\bar{A}_0^*]$	$\mathrm{Im}[A_{\perp}A_0^*+\bar{A}_{\perp}\bar{A}_0^*]$	$-i(ar{A}_{\perp}A_0^*+A_{\perp}^*ar{A}_0)e^{-i\phi_M}$	
6	$\operatorname{Im}[A_{\perp}A_0^* - \bar{A}_{\perp}\bar{A}_0^*]$	$\mathrm{Im}[A_{\perp}A_0^*+\bar{A}_{\perp}\bar{A}_0^*]$	$-i(ar{A}_{ot}A^*_{ot}+$	$A_{\perp}^{*}ar{A}_{\parallel})e^{-i\phi_{M}}$

For a complete list including scalar backgrounds : arXiv:1306.1911

Bhubanjyoti Bhattacharya (UdeM)

3

(日) (周) (三) (三)