SU(3) anatomy of hadronic charm decays

Martin Jung

technische universität dortmund

"Implications of LHCb measurements and future prospects" CERN 15th of October 2013

Based on works with G.Hiller and St.Schacht, Phys.Rev. D87 (2013) 014024 (arXiv:1211.3734), arXiv:131x.xxxx

Introduction

Non-leptonic charm decays and SU(3)

SU(3) and traces of the heavy-quark limit

Conclusions

Why is charm so difficult?

Main problem: missing large hierarchies for m_c

Basically our usual methods don't work here:

- Considering charm as "light" $(m_c \sim m_{u,d,s})$ does not work
- Operator-product expansion (OPE) in $\Lambda_{
 m QCD}/m_c$ questionable
- "Energetic" decay products e.g. in D o PP have $E < 1 \; {
 m GeV}$
- Three-body MEs still extremely hard on the lattice
- Also: SU(3) severely broken

Improvement of theoretical description urgently needed!

 ΔA_{CP} has been a large motivator...

Moriond 2013

Moriond 2013

However: WA still about 3σ from zero: $\Delta a_{\rm CP}^{\rm dir} = (-0.33 \pm 0.12)\%$ Independent interest in understanding dynamics at $\mu \sim 1 \text{ GeV}$

Another Outline

Long discussion whether ΔA_{CP} is NP or not... We need more information!

What are we aiming at?

- NP or enhanced penguins other modes should be affected
- Independent of enhancement: SM implies pattern in CPV
- Find a description of the full $D \rightarrow PP$ data, not just ΔA_{CP} Branching ratios and CP asymmetries, $\delta_{K\pi}$
- Find (more) discriminants between NP and SM

How are we doing this?

Exact limits do not work well
 Include corrections!

Amplitudes for non-leptonic decays

- 1. Use existing hierarchy $M_W \gg m_c$ to build an effective theory Local operators with known coefficients C_i (box to fish)
- 2. Classification by level of Cabibbo-suppression:
 - $c \rightarrow s\bar{d}u$: Cabibbo-favoured (CF), $V_{cs}^*V_{ud} \approx 1$,
 - $c \rightarrow s\bar{s}u(\bar{d}du)$: Singly-Cabibbo-suppressed (SCS), $V_{cs}^* V_{us} \approx -V_{cd}^* V_{ud} \approx \lambda$.
 - Additionally in SCS modes: $V_{cb}^* V_{ub} \sim O(\lambda^5)$, $r_{CKM} = |V_{cb}^* V_{ub}/V_{cs}^* V_{us}| \sim 0.2\%$
- 3. Find a way to determine matrix elements of the operators
- 4. Calculate via, e.g.,

$$\mathcal{A}^{CF} = V_{cs}^* V_{ud} \sum_i C_i \langle PP | \mathcal{O}_i | D \rangle$$

These matrix elements main objects of this talk

Flavour SU(3) Symmetry

Wigner-Eckart-Theorem expresses MEs in terms of fewer reduced MEs and Clebsch-Gordan-coefficients

SU(3) flavour symmetry...

- is approximate, for $m_u = m_d = m_s$
- does not allow to calculate MEs, but relates them
- provides a model-independent approach
- includes FSI

The analysis. . .

- exhibits different structures for SM and NP
- determines reduced MEs from data
 improves automatically with coming measurements!

Breaking SU(3)

Observation: $BR(D^0 \to K^+K^-)/BR(D^0 \to \pi^+\pi^-)|_{\exp} \approx 2.8
eq 1|_{{
m SU}(3)}$

➡30% effect on amplitude level possible explanation! [Savage '91]

Breaking SU(3)

Observation: $BR(D^0 \rightarrow K^+K^-)/BR(D^0 \rightarrow \pi^+\pi^-)|_{\exp} \approx 2.8 \neq 1|_{SU(3)}$

➡30% effect on amplitude level possible explanation! [Savage '91]

The symmetry-breaking term is known: $\mathcal{H}_{\mathrm{mass}} = -\sum_{q} m_{q} \bar{q} q$

- In principle systematic expansion in $\epsilon = m_s/\Lambda_{\rm QCD} \sim 30\%$ possible [Savage'91,Kwong/Rosen'93,Chau/Cheng'94,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

Breaking SU(3)

Observation: $BR(D^0 \rightarrow K^+K^-)/BR(D^0 \rightarrow \pi^+\pi^-)|_{\exp} \approx 2.8 \neq 1|_{SU(3)}$

➡30% effect on amplitude level possible explanation! [Savage '91]

The symmetry-breaking term is known: $\mathcal{H}_{\mathrm{mass}} = -\sum_{q} m_{q} \bar{q} q$

- In principle systematic expansion in $\epsilon=m_s/\Lambda_{\rm QCD}\sim 30\%$ possible [Savage'91,Kwong/Rosen'93,Chau/Cheng'94,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

In the remainder of this talk:

Check if expansion works for full $D \rightarrow PP$ data

(Confirmed for subset $D \rightarrow P^+P^-$ e.g. in [Feldmann et al., Brod et al.'12])

Number of MEs large, but possible to handle

Find ways to reduce number of MEs for sharper predictions (See also Yuval's talk for a different idea)

This paves the way to address the question of NP

Some details on the method

Generally:

- Classify initial/final states and Hamiltonian, e.g. $(D)\sim ({f \bar 3})$
- For final states and Hamiltonian: tensor products → irreducible representations (CG coeffs)
- Classify reduced matrix elements (MEs)
- SU(3) limit for $D \rightarrow P_8 P_8$:
 - 3 MEs w/o CPV
 - 2 more $\sim r_{\rm CKM}$
 - Problem: fit doesn't work

Some details on the method

Generally:

- Classify initial/final states and Hamiltonian, e.g. $(D) \sim ({f \bar 3})$
- For final states and Hamiltonian: tensor products → irreducible representations (CG coeffs)
- Classify reduced matrix elements (MEs)
- SU(3) limit for $D \rightarrow P_8 P_8$:
 - 3 MEs w/o CPV
 - 2 more $\sim r_{\rm CKM}$
 - Problem: fit doesn't work

SU(3) analysis to first order breaking: [Pirtskhalava/Uttayarat,Grossman/Robinson,Hiller/MJ/Schacht '12]

- Breaking by quark masses, we leave isospin intact, $\epsilon \sim ({f 8})$
- $\mathcal{H}_{\epsilon} \sim \mathcal{H}_{0} \otimes (\mathbf{8}) \sim 11$ representations (!)
- Lots of new MEs: $(\epsilon \times r_{CKM} \rightarrow 0!)$ $\mathcal{O}(1) + \mathcal{O}(\epsilon) = 3 + 15 \rightarrow 11$, due to linear dependencies

What can we do with 11+2 MEs?

Questions we want to address first: [Hiller/MJ/Schacht'12]

- Can the full dataset $D \rightarrow PP$ be described with reasonable SU(3) breaking?
- How large the penguin enhancement has to be?
- What are "minimal scenarios" to explain the data?
- Can we differentiate between NP scenarios?

In this process:

- Include all available data on D
 ightarrow PP
- Avoid prejudices about representations
- These goals complicate the analysis a lot

Quantifying SU(3) breaking

Quantifying SU(3) breaking non-trivial. Here:

- Maximum of normalized SU(3)-breaking ME (δ_X)
 ▶lgnores suppression by Clebsch-Gordan coefficients
- Maximum of normalized SU(3)-breaking amplitude (δ'_X)
 ➡Ignores possible cancellations

New: Include all MEs(!)
New: Include all data
Classify all solutions
SU(3) breaking 25 - 40% ok
"Minimal solutions":

need at least two O(ε) MEs
need at least one ME from

 need at least one ME from higher representations

Quantifying "penguin enhancement" (post-Moriond) For penguins, analogous to SU(3):

- 1. δ_3 max. normalized ME \sim $\textit{r}_{\rm CKM}$
- 2. δ_3' max. amplitude $\sim {\it r}_{\rm CKM}$
- $bdelta_{3}^{(')}$ remains huge for 68% CL

Reasons?

- Not only $\Delta a_{\rm CP}!$
- Other CPA's with largish c.v's $(D^0 \rightarrow K_S K_S, D_s \rightarrow \pi^+ K_S, K^+ \pi^0)$ • Without these, 'nominal' δ_3 ok Interest in $A_{CP}(D^0 \rightarrow K_S K_S)$: enhancement $\sim 1/\epsilon$ expected (see also [Atwood/Soni '12])

More data necessary (surprise!) to

- check largish asymmetries
- obtain compatible values for ΔA_{CP}

Discriminating NP from SM

NP sensitivity: different SU(3) structure, $\mathcal{H}^{SCS} = \mathcal{H}_{SM}^{SCS} + \mathcal{H}_{NP}$

- Two options: improve data or theory (\rightarrow less MEs)
- So far, only ∆A_{CP} significant (less so since Moriond)
 ▶2 complex CPV MEs, no predictions with present data

Proof of principle for the future, using pseudo-data:

- Assume LHCb projection for Δa_{CP}, similar precisions for 5 more measurements (LHCb+Belle II+BES III)
- All other uncertainties as today

Only 3 breaking MEs, present data

Heavy-quark limit in charm decays!?

Heavy-quark limit in charm decays!?

Remember: QCD factorization [BBNS'99,'00,BN'03,Grossman et al.'07]

- MEs for $m_c \rightarrow \infty$ in terms of a few universal, non-perturbative objects, e.g. decay constants and form factors
- Corrections of higher orders in α_s are systematically calculable
- Power corrections $\mathcal{O}(\Lambda/m_c)$ are the main problem

How large are the corrections?

- BR's in heavy-quark limit $(m_c \to \infty)$:
 - colour-allowed-tree decays
 - O(colour-suppressed decays) ✓
 - annihilation not included
- Reasonable starting point
- Assume structure of QCDF to hold
 - Power corrections might be large and flavour-dependent

QCDF-structure as SU(3) input I [Hiller/MJ/Schacht '13, in prep.]

QCDF in charm decays is known not to work precisely...

What do we mean by structural input?

- 1. No constraint in the SU(3) limit
- 2. No explicit computation of $a_{1,2}^{DM_1M_2}$, $b_{1,2}^{M_1M_2}$
- 3. No assumption about strong phases
- 4. No simple $X_{A,H}$ parametrization for annihilation
- Use relations between amplitudes implied by features of QCDF
- Match these relations onto SU(3) amplitudes
- SU(3) constrains general QCDF parametrization

QCDF-structure as SU(3) input I [Hiller/MJ/Schacht '13, in prep.]

QCDF in charm decays is known not to work precisely...

What do we mean by structural input?

- 1. No constraint in the SU(3) limit
- 2. No explicit computation of $a_{1,2}^{DM_1M_2}$, $b_{1,2}^{M_1M_2}$
- 3. No assumption about strong phases
- 4. No simple $X_{A,H}$ parametrization for annihilation
- Use relations between amplitudes implied by features of QCDF
- Match these relations onto SU(3) amplitudes
- SU(3) constrains general QCDF parametrization

Starting point universal a1:

- Pattern of BR's: a_2 has larger corrections than a_1
- SU(3) breaking in a_1 : $O(\alpha_s \times \Lambda/m_c \times m_s/\Lambda \times \frac{C_2/C_1 \times 1/N_C^2}{N_c})$
- QCDF: relative influence in $a_2 C_1^2/C_2^2 \sim 10$ stronger
- Assume *a*₁ flavour-universal, *a*₂ process-dependent
- Yields one relation for MEs in SU(3) approach

QCDF-structure as SU(3) input II

Universal structure of annihilation:

- In QCDF, mainly two annihilation coefficients $b_{1,2}^{M_1M_2}$
- Both MEs involve identical convolution: $b_2^{M_1M_2}/b_1^{M_1M_2}=C_2/C_1$
- However: holds only in one-gluon approximation

$$\clubsuit$$
 allow for $b_2^{M_1M_2}/b_1^{M_1M_2}=c$

Yields two more relations for MEs in SU(3) approach

▶Third scenario is w.i.p.

QCDF and SU(3) - first results | PRELIMINARY

Started analysis in scenarios A and B:

- Sum rules derived 🗸
- Minima with $\chi^2/{
 m dof} \sim 1$
- $\delta_{X^{(\prime)}} < 50\%$ 🗸

Scenario B ($\chi^2/dof \sim 5/5$):

- Sum rules are restrictive
 but fit works!
 - Somewhat larger SU(3) breaking?
 - plots not directly comparable
 - dof not constant over the plot!
 - Little change in penguin enhancement

QCDF and SU(3) - first results II PRELIMINARY

Scenario B continued:

- Fit with all remaining MEs
- Structures emerge with present data

QCDF yields non-trivial constraints for SU(3) analysis
 We are exploring further consequences, stay tuned...

Conclusions

- Better understanding necessary, independent of Δa_{CP}
- First unbiased, comprehensive analysis of $D \rightarrow PP$
- Description possible with reasonable SU(3) breaking
- Direct CP violation in charm (all modes!) remains interesting
- Enhanced asymmetry in $D^0 o K_S K_S$ expected
- · Generally very hard to make quantitative statements
- More data will help to improve analysis
 - Theory side: idea to use QCDF structure for SU(3) breaking
 - Sum rules for decay amplitudes, eliminate SU(3) MEs
 - Restricted fits still work

Outlook:

- Complete analysis for QCDF influence (+NP) w.i.p.
- Interesting times! Measurements to come from LHC(b), Belle II, BES III, ...

Available data for $D \rightarrow PP$ I

Observable	Measurement	References	
SCS CP asymmetries			
$\Delta a_{CP}^{\mathrm{dir}}(K^+K^-,\pi^+\pi^-)$	-0.00333 ± 0.00120		
$\Sigma a_{CP}^{\mathrm{dir}}(K^+K^-,\pi^+\pi^-)$	$+0.00008\pm0.00228$	†	
$a_{CP}^{\overline{d}ir}(D^0 \to K_S K_S)$	-0.23 ± 0.19		
$a_{CP}^{\mathrm{dir}}(D^0 \to \pi^0 \pi^0)$	$+0.001 \pm 0.048$		
$a_{CP}^{dir}(D^+ \rightarrow \pi^0 \pi^+)$	$+0.029 \pm 0.029$		
$a_{CP}^{\mathrm{dir}}(D^+ \to K_S K^+)$	$+0.0022\pm 0.0025$		
$a_{CP}^{dir}(D_s \to K_S \pi^+)$	$+0.011 \pm 0.007$	t	
$a_{CP}^{dir}(D_s \rightarrow K^+ \pi^0)$	$+0.266 \pm 0.228$		
Indirect CP Violation			
aind	$+0.00015\pm0.00052$		
$\delta_L \equiv 2 \operatorname{Re}(\varepsilon) / (1 + \varepsilon ^2)$	$(3.32 \pm 0.06) \cdot 10^{-3}$		
${\cal K}^+\pi^-$ strong phase difference			
$\delta_{K\pi}$	$(11.7 \pm 10.2)^{\circ}$	‡	

Table : The observables and the data on indirect CP violation used in this work. We subtract the contribution from indirect CP violation where appropriate. Note that the BESIII result for $\delta_{K\pi}$ cannot be taken into account, as is relies on external non-independent input. [†]Our average with systematic and statistical error being added quadratically. [‡]Our symmetrization of uncertainties.

Available data for $D \rightarrow PP$ II

Observable	Measurement	References
SCS branching ratios		
$\mathcal{B}(D^0 \to K^+ K^-)$	$(3.96 \pm 0.08) \cdot 10^{-3}$	
${\cal B}(D^0 o \pi^+\pi^-)$	$(1.401 \pm 0.027) \cdot 10^{-3}$	
$\mathcal{B}(D^0 \to K_S K_S)$	$(0.17 \pm 0.04) \cdot 10^{-3}$	
${\cal B}(D^0 o \pi^0 \pi^0)$	$(0.80 \pm 0.05) \cdot 10^{-3}$	
${\cal B}(D^+ o \pi^0 \pi^+)$	$(1.19 \pm 0.06) \cdot 10^{-3}$	
$\mathcal{B}(D^+ \to K_S K^+)$	$(2.83 \pm 0.16) \cdot 10^{-3}$	
$\mathcal{B}(D_s \rightarrow K_S \pi^+)$	$(1.21 \pm 0.08) \cdot 10^{-3}$	
${\cal B}(D_s o K^+ \pi^0)$	$(0.62 \pm 0.21) \cdot 10^{-3}$	
CF* branching ratios		
$\mathcal{B}(D^0 \to K^- \pi^+)$	$(3.88 \pm 0.05) \cdot 10^{-2}$	
${\cal B}(D^0 o K_S \pi^0)$	$(1.19 \pm 0.04) \cdot 10^{-2}$	
${\cal B}(D^0 o {\cal K}_L \pi^0)$	$(1.00 \pm 0.07) \cdot 10^{-2}$	
$\mathcal{B}(D^+ \to K_S \pi^+)$	$(1.47 \pm 0.07) \cdot 10^{-2}$	
${\cal B}(D^+ o K_L \pi^+)$	$(1.46 \pm 0.05) \cdot 10^{-2}$	
$\mathcal{B}(D_s \to K_S K^+)$	$(1.48 \pm 0.05) \cdot 10^{-2}$	†
DCS branching ratios		
$\mathcal{B}(D^0 \to K^+\pi^-)$	$(1.47 \pm 0.07) \cdot 10^{-4}$	
${\cal B}(D^+ ightarrow K^+ \pi^0)$	$(1.83 \pm 0.26) \cdot 10^{-4}$	

Table : The data on the observables used in this work. [†]Our average with systematic and statistical error being added quadratically. [‡]Our symmetrization of uncertainties. ^{*}Decays with a $K_{S,L}$ in the final state, *i.e.*, those with a CF and DCS component are assigned to the CF channels.

Further inputs into the analysis

m_{D^0}	(1864.86 ± 0.13) MeV	
m_{D_s}	(1968.49 ± 0.32) MeV	
m_{π^0}	(134.9766 ± 0.0006) MeV	
m_{K^0}	(497.614 ± 0.024) MeV	
f _D	(205.3 ± 5.2) MeV	
f _{Ds}	(257.5 ± 4.5) MeV	
f_{π}	$(130.41\pm0.03\pm0.2)~{ m MeV}$	
f _K	$(156.1\pm0.2\pm0.8\pm0.2)~{ m MeV}$	
$F_0^{DK}(0)$	0.737 ± 0.005	t
$F_0^{D\pi}(0)$	0.638 ± 0.012	t

Table : Numerical input for the heavy quark scenarios. † Our average, with systematic and statistical errors being added quadratically.

Pseudo-data for the future scenario

Observable	"Future" data		
SCS CP asymmetries			
$\Delta a_{CP}^{\mathrm{dir}}(K^+K^-,\pi^+\pi^-)$	-0.007 ± 0.0005		
$\Sigma a_{CP}^{\mathrm{dir}}(K^+K^-,\pi^+\pi^-)$	-0.006 ± 0.0007		
$a_{CP}^{\mathrm{dir}}(D^+ \to K_S K^+)$	-0.003 ± 0.0005		
$a_{CP}^{ m dir}(D_s o K_S \pi^+)$	0.0 ± 0.0005		
$a_{CP}^{\mathrm{dir}}(D_s o K^+ \pi^0)$	0.05 ± 0.0005		
$K^+\pi^-$ strong phase difference			
$\delta_{K\pi}$	$21.4^\circ\pm3.8^\circ$		

Table : Future pseudo-data, all other values unchanged. The central values of the single CP asymmetries that correspond to Δa_{CP}^{dir} and Σa_{CP}^{dir} are $a_{CP}^{dir}(D^0 \to K^+K^-) = -0.0065$ and $a_{CP}^{dir}(D^0 \to \pi^+\pi^-) = 0.0005$.