## The Flavor Of the Higgs

Roni Harnik, Fermilab

Results drawn from: Blankenburg, Ellis, Isidori 1202.5704 RH, Kopp, Zupan 1209.1397 Brod, Haisch, Zupan 1310.1385 RH, Martin, Okui, Primulando, Yu 1308.1094

## Plan:

#### **\*** FV and CPV Higgs.

- o Models
- Reasonable size of FV.
- Constraints:
  - Lepton flavor.
  - Quark flavor.
  - CP phases.

## Plan:

- **\*** FV and CPV Higgs.
  - o Models
  - Reasonable size of FV.
- Constraints:
  - Lepton flavor.
  - Quark flavor.
  - CP phases.

will come from a variety of experiments. Both low and high energy.

## Higgs Couplings: SM

The Higgs couplings in the SM are determined. Thats why they are so important to measure!



\* Yukawa couplings:

 $\mathcal{L} \supset y_i h f_L^i f_R^i + h.c.$  with  $y_i = \frac{m_i}{m_i}$ 

In the SM Yukawa couplings are: \* Flavor diagonal. \* Real (CP is conserved).

## Higgs Couplings: New Physics

\* The Higgs boson can have more general couplings. the mass basis we could have:

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$$

But didn't I just tell you that the Higgs is automatically aligned with flavor?

How do we get FV and CPV Higgs?

**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

**3**. Re-diagonalize mass matrix.

**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

**3**. Re-diagonalize mass matrix.



**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

**3**. Re-diagonalize mass matrix.



$$\mathcal{L} = \lambda_f H \bar{f} f + \frac{(H^{\dagger} H) H \bar{f} f}{\Lambda^2}$$

**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.



**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.



**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

**3**. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda_f H \bar{f} f + \frac{(H^{\dagger} H) H \bar{f} f}{\cdot} \checkmark$ 



**\*** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

**2**. Sprinkle flavor indices all over the place.

**3**. Re-diagonalize mass matrix.



\* Writing it a bit more neatly, we get:



or 
$$Y_{ij} = \frac{m_i}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} \hat{\lambda}_{ij}$$

\* Writing it a bit more neatly, we get:





### "Natural" FV

**\*** FV that's too large comes at a tuning price:

$$\sqrt{2}m = V_L \left[\lambda + \frac{v^2}{2\Lambda^2}\lambda'\right] V_R^{\dagger} v \qquad \qquad \sqrt{2}Y = V_L \left[\lambda + 3\frac{v^2}{2\Lambda^2}\lambda'\right] V_R^{\dagger}$$

#### \* Requiring no cancelation in the determinant

$$Y_{ij} \lesssim rac{\sqrt{m_i m_j}}{v}$$
 "natural" models\*.

\*In this era of data, considerations of fine-tuning are not of huge importance... But we'll keep it in the back of our mind. With NP Yukawa couplings can be: \* Flavor off-diagonal. \* complex (CP violating). \* Both.

#### So, in addition to these



there are a lot more couplings the Higgs

can have, and that we should probe.

# Low energy experiments are crucial to test many of these couplings.

## Leptonic Flavor Violation

 $\mathcal{L}_Y \supset -Y_{e\mu}\bar{e}_L\mu_Rh - Y_{\mu e}\bar{\mu}_L e_Rh - Y_{e\tau}\bar{e}_L\tau_Rh - Y_{\tau e}\bar{\tau}_L e_Rh - Y_{\mu\tau}\bar{\mu}_L\tau_Rh - Y_{\tau\mu}\bar{\tau}_L\mu_Rh + h.c.$ 

Which experiments constrain the Yij's?

## Higgs couplings to $\mu e$

\* Higgs coupling to  $\mu e$  is constrained, e.g. by:



## Higgs couplings to $\mu e$

\* Higgs coupling to  $\mu e$  is constrained, e.g. by:



### Higgs couplings to $\mu e$



Outside of LHC reach.

Probing "natural" models.

## Higgs couplings to $\tau\mu$



LHC h→TM gives dominant Bound.

(currently just a theorist's re-interpretation)

"natural models" are within reach.

RH, Kopp, Zupan 1209.1397

## Higgs couplings to $\tau e$

\*  $\tau e$  is similar to  $\tau \mu$ .... but:



## Higgs couplings to $\tau e$

\*  $\tau e$  is similar to  $\tau \mu$ .... but:



### **Quark Flavor Violation**

## Meson Mixing



#### Meson mixing's powerful:

| Technique                        | Coupling                                                   | Constraint                        | $m_i m_j / v^2$ |
|----------------------------------|------------------------------------------------------------|-----------------------------------|-----------------|
| $D^0$ occillations [49]          | $ Y_{uc} ^2,  Y_{cu} ^2$                                   | $< 5.0 \times 10^{-9}$            | E 10-8          |
| D OSCILLATIONS [40]              | $ Y_{uc}Y_{cu} $                                           | $< 7.5 \times 10^{-10}$           |                 |
| $B^0$ or contractions [48]       | $ Y_{db} ^2,   Y_{bd} ^2$                                  | $<2.3\times10^{-8}$               | 3,10-7          |
| D <sub>d</sub> Oscillations [40] | $ Y_{db}Y_{bd} $                                           | $< 3.3 \times 10^{-9}$            |                 |
| $B^0$ oscillations [48]          | $ Y_{sb} ^2,   Y_{bs} ^2$                                  | $< 1.8 \times 10^{-6}$            |                 |
| D <sub>s</sub> Oscillations [40] | $ Y_{sb}Y_{bs} $                                           | $<2.5\times10^{-7}$               | 7x10-6          |
|                                  | $\operatorname{Re}(Y_{ds}^2), \operatorname{Re}(Y_{sd}^2)$ | $[-5.9\dots 5.6] \times 10^{-10}$ |                 |
| $K^0$ oscillations [48]          | $\mathrm{Im}(Y^2_{ds}),\mathrm{Im}(Y^2_{sd})$              | $[-2.91.6] \times 10^{-12}$       | <b>e</b> 10-9   |
| A OSCIIIATIONS [40]              | $\operatorname{Re}(Y_{ds}^*Y_{sd})$                        | $[-5.6\dots 5.6] \times 10^{-11}$ | OXIU            |
|                                  | $\mathrm{Im}(Y_{ds}^*Y_{sd})$                              | $[-1.42.8] \times 10^{-13}$       | _               |

#### "Natural" models are constrained!

### "what about $B_s \rightarrow T\mu$ ?" "And $B_s \rightarrow \mu\mu$ ?"

#### Lets do a Back of the envelope estimate:







B<sub>s</sub>→µµ:































not as strong as mixing...

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

$$\sum \sim \frac{1}{m_h^2} Y_{bs} Y_{\tau\mu}^*$$

use the limits:  $Y_{BS} < 5 \times 10^{-4}$  and  $Y_{TM} < 10^{-2}$ 

![](_page_32_Figure_4.jpeg)

 $BR(B_s \rightarrow T\mu) \sim 5 \times 10^{-8}$ 

#### Beyond reach ...

## FV Couplings with top

#### \* A variety of techniques:

| Technique                                   | Coupling                           | Constraint             | $m_i m_j / v^2$ |
|---------------------------------------------|------------------------------------|------------------------|-----------------|
|                                             | $\sqrt{ Y_{tc}^2  +  Y_{ct} ^2}$   | < 0.34                 | 3x10-3          |
| $l \rightarrow nj$ [Craig et al. 1207.6794] | $\sqrt{ Y_{tu}^2  +  Y_{ut} ^2}$   | < 0.34                 | 7×10-6          |
|                                             | $ Y_{ut}Y_{ct} ,  Y_{tu}Y_{tc} $   | $<7.6\times10^{-3}$    |                 |
| $D^0$ oscillations                          | $ Y_{tu}Y_{ct} ,  Y_{ut}Y_{tc} $   | $<2.2\times10^{-3}$    | 2×10-4          |
|                                             | $ Y_{ut}Y_{tu}Y_{ct}Y_{tc} ^{1/2}$ | $< 0.9 \times 10^{-3}$ |                 |
| neutron EDM                                 | $\operatorname{Im}(Y_{ut}Y_{tu})$  | $<4.4\times10^{-8}$    | 7×10-6          |

## FV Couplings with top

#### \* A variety of techniques:

| Technique                                               | Coupling                                   | Constraint             | $m_i m_j / v^2$ |
|---------------------------------------------------------|--------------------------------------------|------------------------|-----------------|
| $t \rightarrow bi$                                      | $\sqrt{ Y_{tc}^2  +  Y_{ct} ^2}$           | < 0.34                 | 3x10-3          |
| $t \rightarrow nj$<br>[Craig et al. 1207.6794]          | $\sqrt{ Y_{tu}^2  +  Y_{ut} ^2}$           | < 0.34                 | 7x10-6          |
|                                                         | $ Y_{ut}Y_{ct} ,  Y_{tu}Y_{tc} $           | $<7.6\times10^{-3}$    |                 |
| $D^0$ oscillations                                      | $ Y_{tu}Y_{ct} ,  Y_{ut}Y_{tc} $           | $<2.2\times10^{-3}$    | 2×10-4          |
|                                                         | $ Y_{ut}Y_{tu}Y_{ct}Y_{tc} ^{1/2}$         | $< 0.9 \times 10^{-3}$ |                 |
| neutron EDM                                             | $\operatorname{Im}(Y_{ut}Y_{tu})$          | $<4.4\times10^{-8}$    | 7×10-6          |
| ★ <u>Improvements</u> :<br>t + (h -> yy)<br>(ATLAS-CON) | : Y <sub>tj</sub> <0.17 (!)<br>F-2013-081) |                        |                 |
| lepton + multi-B +                                      | met: Y <sub>tj</sub> <10 <sup>-3</sup> (!) |                        |                 |

(Atwood, Gupta, Soni 1305.2427)

## FV Couplings with top

#### \* A variety of techniques:

| Technique                                                 | Coupling                                | Constraint             | $m_i m_j / v^2$ |
|-----------------------------------------------------------|-----------------------------------------|------------------------|-----------------|
| $t \rightarrow h \dot{c}$                                 | $\sqrt{ Y_{tc}^2  +  Y_{ct} ^2}$        | < 0.34                 | 3×10-3          |
| $t \rightarrow hf$ [Craig et al. 1207.6794]               | $\sqrt{ Y_{tu}^2  +  Y_{ut} ^2}$        | < 0.34                 | 7x10-6          |
|                                                           | $ Y_{ut}Y_{ct} ,  Y_{tu}Y_{tc} $        | $<7.6\times10^{-3}$    |                 |
| $D^0$ oscillations                                        | $ Y_{tu}Y_{ct} ,  Y_{ut}Y_{tc} $        | $<2.2\times10^{-3}$    | 2×10-4          |
|                                                           | $ Y_{ut}Y_{tu}Y_{ct}Y_{tc} ^{1/2}$      | $< 0.9 \times 10^{-3}$ |                 |
| neutron EDM                                               | $\operatorname{Im}(Y_{ut}Y_{tu})$       | $< 4.4 \times 10^{-8}$ | 7×10-6          |
| * <u>Improvements</u> :<br>t + (h -> yy) :<br>(ATLAS-CONF | Y <sub>tj</sub> <0.17 (!)<br>-2013-081) | $u \xrightarrow{i} t$  |                 |
| lepton + multi-в + r<br>(Atwood, Gupta, So                | ni 1305.2427)                           | powerful!              | γ               |

## Flavor diagonal phases

<u>Assume</u> diagonal Yukawas with  $|Y_i| = \frac{m_i}{v}$ .

What are the constraints on the phases of the Yi's?

![](_page_37_Figure_2.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_2.jpeg)

![](_page_40_Figure_2.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_2.jpeg)

## LHC & EDMS

Top couplings are probed both by the LHC (gluon fusion) and by EDM experiments. Interpley

![](_page_43_Figure_3.jpeg)

### $\tau$ phase

\* The tau phase is currently unconstrained!

- Can be probed by:
  - Hadronic tau polarization in Higgs decay.
  - Electron EDM.

### $\tau$ phase

\* The tau phase is currently unconstrained!

- \* Can be probed by:
  - Hadronic tau polarization in Higgs decay.
  - Electron EDM.

![](_page_45_Figure_5.jpeg)

## $\tau$ phase at Colliders

#### \* A challenging measurement.

**\*** Requires hadroinc "tau-substructure" (LHCb ?).

![](_page_46_Figure_4.jpeg)

# θ: the relative azimuthal angle between reconstructed polarizations

### $\tau$ phase at Colliders

![](_page_47_Figure_2.jpeg)

θ: the relative azimuthal angle between reconstructed polarizations

### $\tau$ phase at Colliders

![](_page_48_Figure_2.jpeg)

## W phase

Up-down asymmetry is sensitive to CPV in Higgs coupling to W.

The paper I discovered very late last night....

Delanuey, Perez, de Sandes, Skiba 1308.4930

![](_page_49_Figure_4.jpeg)

FIG. 1: Definition of the production and decay angles. The W and h directions are drawn in the  $q\bar{q}'$  center-of-mass frame, while the leptons are drawn in their parent W rest frame.  $\phi$  is the angle between the production plane and the W decay plane.

## Summary:

**Flavor violation:**  $\sqrt{=}$  sensitive at the level of  $Y_{ij} \lesssim \frac{\sqrt{m_i m_j}}{m_i}$ .

| Leptons | Probe | d-quarks | Probe   | d-quarks | Probe              |
|---------|-------|----------|---------|----------|--------------------|
| μ-е     | muons | s-d      | K-K 🧹   | С-И      | D-D 🗸              |
| τ-е     | eEDM* | b-d      | B-B 🗸   | t-u      | nEDM <sup>∗√</sup> |
| τ-μ     | LHC 🗸 | b-s      | B₅-B₅ √ | t-c      | LHC / D-D          |

\*LHC, if CP is conserved.

#### <u>CP violation:</u>

| Phase | Probe | Phase | Probe                  |
|-------|-------|-------|------------------------|
| е     | e-EDM | t     | EDMs                   |
| u,d   | nEDM  | τ     | LHC /<br>Higgs factory |
| γ     | eEDM  | W/Z   | LHC                    |

Multiple probes! Many experiments! Almost all channels are sensitive at well motivated levels!

## Summary:

Flavor violation:  $\sqrt{=}$  sensitive at the level of  $Y_{ij} \lesssim \frac{\sqrt{m_i m_j}}{m_i m_j}$ . Probe d-quarks Probe d-quarks Leptons Probe К-К 🧹 muons D-D s-d μ-е  $C-\mathcal{U}$ eEDM\* The Higgs can violate flavor and CP. b-d B-B 1-11  $\tau$ -eA large variety of measurements and future opportunities! Multiple probes! Probe IIdse Many experiments! e-EDM **EDMs** t eLHC / Almost all channels **nEDM** u,dτ Higgs factory are sensitive at well W/ZLHC eEDM  $\gamma$ motivated levels!

Deleted Scenes:

## LFV Summary

| Channel                           | Coupling                                                       | Bound                            |              |
|-----------------------------------|----------------------------------------------------------------|----------------------------------|--------------|
| $\mu  ightarrow e\gamma$          | $\sqrt{ Y_{\mu e} ^2 +  Y_{e\mu} ^2}$                          | $< 3.6 \times 10^{-6}$           | _            |
| $\mu \rightarrow 3e$              | $\sqrt{ Y_{\mu e} ^2 +  Y_{e\mu} ^2}$                          | < 0.31                           |              |
| electron $g-2$                    | $\operatorname{Re}(Y_{e\mu}Y_{\mu e})$                         | $-0.019\ldots 0.026$             |              |
| electron EDM                      | $ \mathrm{Im}(Y_{e\mu}Y_{\mu e}) $                             | $< 9.8 \times 10^{-8}$           |              |
| $\mu \to e$ conversion            | $\sqrt{ Y_{\mu e} ^2 +  Y_{e\mu} ^2}$                          | $<4.6\times10^{-5}$              |              |
| $M$ - $\overline{M}$ oscillations | $ Y_{\mu e} + Y_{e\mu}^* $                                     | < 0.079                          |              |
| $\tau \to e\gamma$                | $\sqrt{ Y_{\tau e} ^2 +  Y_{e\tau} ^2}$                        | < 0.014                          | _            |
| $	au  ightarrow e \mu \mu$        | $\sqrt{ Y_{\tau e} ^2 +  Y_{e\tau} ^2}$                        | < 0.66                           |              |
| electron $g-2$                    | $\operatorname{Re}(Y_{e\tau}Y_{\tau e})$                       | $[-2.1\dots 2.9] \times 10^{-3}$ |              |
| electron EDM                      | $ \mathrm{Im}(Y_{e	au}Y_{	au e}) $                             | $< 1.1 \times 10^{-8}$           |              |
| $\tau \to \mu \gamma$             | $\sqrt{ Y_{\tau\mu} ^2 +  Y_{\mu\tau} ^2}$                     | $< 1.6 \times 10^{-2}$           | _            |
| $	au  ightarrow 3\mu$             | $\sqrt{ Y_{	au\mu}^2 +  Y_{\mu	au} ^2}$                        | < 0.52                           |              |
| muon $g-2$                        | $\operatorname{Re}(Y_{\mu\tau}Y_{\tau\mu})$                    | $(2.7 \pm 0.75) \times 10^{-3}$  | many         |
| muon EDM                          | $\operatorname{Im}(Y_{\mu\tau}Y_{\tau\mu})$                    | -0.81.0                          | processes to |
| $\mu \to e \gamma$                | $( Y_{\tau\mu}Y_{\tau e} ^2 +  Y_{\mu\tau}Y_{e\tau} ^2)^{1/4}$ | $< 3.4 \times 10^{-4}$           | consider     |

### **Top Flavor Violation**

#### \* But, top decays are interesting:

![](_page_54_Figure_2.jpeg)