

Workshop Summary & Outlook

Thanks to the organizers: John Ellis, Tim Gershon, Gino Isidori, Patrick Koppenburg, Gilad Perez, Frederic Teubert, Andreas Weiler, Guy Wilkinson etc...

*Apologies if I did not mention your talk

Prime Objective

- Dictates that physics beyond the Standard Model must be found
- "The success of the LHCb experiment has so far been a nightmare for all flavour physicists..." Gauld, Goetz and Haisch

1 TeV Scale New Particles

Naturalness

- Higgs is most sensitive to physics of order M=125 GeV, has been pushed to ~1 TeV due to absence of signals.
 Can be pushed higher. (Soni suggests 10 TeV for KK)
- But corrections to Higgs mass go as M², so can't push M too high without getting into fine tuning problem (see Zupan's talk)
- Need New Physics to cut off quantum corrections
- Suggested NP mechanisms: SUSY, Higgs compositeness, and extra dimensions. Each predicts a rich spectrum of new states

Flavor as a High Mass Probe

Already excluded ranges if c_i~1

$$\square \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i}{L_i^2} O_i, \text{ take } c_i = 1$$

Ways out

- New particles have large masses >>1 TeV
- New particles have degenerate masses (or alignment, see Shadmi's talk)
- 3. Mixing angles in new sector are small, same as in SM (MFV)
- 4. The above already implies strong constrains on NP

See: Isidori, Nir

& Perez arXiv:1002.0900; Neubert EPS 2011 talk

Harink: Limits on NP Higgs Yukawa's

Meson Mixing

Meson mixing's powerful:

Technique	Coupling	Constraint	M_iM_j/v^2
D^0 oscillations [48]	$ Y_{uc} ^2$, $ Y_{cu} ^2$	$<5.0\times10^{-9}$	C 10-8
	$ Y_{uc}Y_{cu} $	$<7.5 \times 10^{-10}$	5x10 ⁻⁸
B_d^0 oscillations [48]	$ Y_{db} ^2, Y_{bd} ^2$	$<2.3\times10^{-8}$	3x10 ⁻¹
	$\left Y_{db}Y_{bd} ight $	$<3.3\times10^{-9}$	SXIC .
B_s^0 oscillations [48]	$ Y_{sb} ^2, Y_{bs} ^2$	$<1.8\times10^{-6}$	_
	$\left Y_{sb}Y_{bs} ight $	$<2.5\times10^{-7}$	7410-6
K^0 oscillations [48]	$\operatorname{Re}(Y_{ds}^2), \operatorname{Re}(Y_{sd}^2)$	$[-5.9\dots 5.6]\times 10^{-10}$	
	$\operatorname{Im}(Y_{ds}^2),\operatorname{Im}(Y_{sd}^2)$	$[-2.9\dots 1.6]\times 10^{-12}$	0.10-9
	$\mathrm{Re}(Y_{ds}^*Y_{sd})$	$[-5.6\dots 5.6]\times 10^{-11}$	8x1 0 ⁻⁹
	$\operatorname{Im}(Y_{ds}^*Y_{sd})$	$[-1.4\dots 2.8] imes 10^{-13}$	

"Natural" models are constrained!

Generic Analyses

Compare measurements look for discrepancies

NP via $\Delta F=2$ processes

■ Bo_(s) mixing and CP. Parameterize NP as h & σ

$$M_{12} = M_{12}^{\text{SM}} \times \left(1 + h e^{2i\sigma}\right)$$

 Tree level processes are assumed not to contain NP, so measure well, especially V_{ub} γ

From Zoltan's talk, now and future

95% cl Limits

Current

Future

- Belle II, LHCb Upgrade
- Assuming no NP

V_{ub} & Right Handed Currents

- Although we assumed before that there was no NP in tree level diagrams, here we revoke that criteria
- What do we know about right-handed currents in b decays?
- CLEO result from ~1/fb

PHYSICAL REVIEW D

VOLUME 47, NUMBER 3

1 FEBRUARY 1993

Lepton asymmetry measurements in $\overline{B} \to D^* l^- \overline{\nu}_l$ and implications for V-A and the form factors

```
S. Sanghera, T. Skwarnicki, R. Stroynowski, M. Artuso, M. Goldberg, N. Horwitz, R. Kennett, G. C. Moneti, F. Muheim, S. Playfer, Y. Rozen, P. Rubin, S. Stone,
```


CLEO V-A

■ cosθ is D*+ decay angle

TABLE III. The $\chi^2/N_{\rm DF}$ for $N_{\rm DF}=4$ for the fits to the $\cos\Theta$ distribution and 95% C.L. limits for allowed amount of V+A hadronic current.

	$\overline{B}^{0} \rightarrow D^{*+}l^{-}\overline{\nu}_l$		$B^- \rightarrow D^{*0}l^-\overline{\nu}_l$		Simultaneous fit	
Model	V-A		V-A	-	(V+A)/(V-A)	
ISGW	1.6	9.0	1.3	6.8	< 19%	
KS	0.9	15.7	0.9	7.3	< 30%	
WSB	2.3	12.0	1.8	5.5	< 24%	

FIG. 3. $dN/d\cos\Theta$ distribution: (a) in the decay $\overline{B}^0 \to D^{*+}l^-\overline{\nu}_l$ and (b) in the decay $B^- \to D^{*0}l^-\overline{\nu}_l$. Overlaid are the results of the fits of the ISGW model assuming pure V-A or V+A currents for the $b\to c$ transition.

A fix for V_{ub}?

- Conflicts among V_{ub} measurements
- Different processes have different sensitivities to right-handed currents

Decay	$ V_{ub} \times 10^4$	add right-handed current	current
$B \to \pi \ell \bar{\nu}_{\ell}$	3.23 ± 0.30	$(1+\epsilon_R)$	axial
$B \to X_u \ell\bar{\nu}_\ell$	4.39 ± 0.21	$(1+\epsilon_R^2)$	vector & axial
$B \to \tau \bar{\nu}_{\tau}$	4.32 ± 0.42	$(1-\epsilon_R)$	vector

V_{ub} Data

• V_{ub} values as functions of ε_R

■ First done by: 🛬

Crivellin,

arXiv:0907.2461

• Ligeti suggests using $\rho \ell \nu$ to measure ϵ_R

LHCb does semileptonic decays

- Used to measure f_s/f_d , otherwise $B_s \rightarrow \mu^+ \mu^-$ is only half a measurement (inclusive e.g. $D_s \mu X \nu$; also used for A_{sl}^s
- Exclusive semileptonic can also be done using constraint of knowing b-decay direction (ala' FNAL fixed target experiments)
- Projections of 2-D fit to D_sμXν

Shopping list

- $B_s \rightarrow K^{(*)} \mu \nu$
- $B_s \rightarrow D_s^{(*)} \mu \nu$ these & above used to provide an independent measure of V_{ub}/V_{cb}
- B^o→ρ^oμv including right-handed current measurements
- B°→D*+µv including right-handed current measurements
- B→D**μν needed to understand
- B°→D*+τν, see talk of *Ciezarek*

Comments on y

- See talk of Gandini
- Use clean methods only
- Don't use $B^- \to D^o \pi^-$, due to possible contamination from D^o CPV. Use $B^- \to D^o K^-$ & eventually DsK

■ Don't use $B^o \to \pi^+ \pi^-$, with $B^o \to K^+ K^-$ assuming U-spin symmetry, but use this to measure the U-spin breaking, so we may be able to use U-spin for something else (e.g. limiting Penguins in ϕ_s)

Top Down Analyses

 Here we pick a model and work out its consequences in many modes

Example

Girrbach

Another Top Down Ex.

$B \rightarrow K^{(*)} \ell^+ \ell^- I$

- I find Kℓ□ℓ⁻ very interesting (Langenbruch talk)
- (1) Isospin asymmetry at 4.4 σ level & doesn't look like experimental effect as not seen in K*ℓ□ℓ⁻. No model can reproduce effect. A real hint at NP or long distance effects that we do not understand? (Zwicky talk)

$B \rightarrow K(*)\ell^+\ell^- II$

- (2) Resonant substructure in $\ell^{\square}\ell^{-}$. Should be present in $K^{(*)}\ell^{\square}\ell^{-}$. Why hasn't it been seen?
- Arethere morestates?
- Need to
 put in K*
 calculations.
 Can affect

angular distributions far from mass

$$m_{\mu^+\mu^-} [{\rm MeV}/c^2]$$

peaks as states are wide

 $(25 \text{ MeV}/c^2)$

$K^*\ell^+\ell^-$ déjà vu ΔA_{cp} ?

■ 1st ΔA_{cp} then P_5 in one q^2 bin. Theory input...

- Much ado about discrepancy in one q² bin with some SM predictions
- In order to see NP must see more than one effect. Need to establish a pattern
- van Dyk: some difference between using all data and selected

red(all) blue(sel) SM 68%, & 95% cl intervals

$B \rightarrow K^{(*)} \ell^+ \ell^- IV$

- Straub: top down model with multi-TeV Z' can explain data
- PS: some disagreement in theoretical prediction uncertainty (see talks of van Dyk and Mahoudi) & relatively large errors.
 Wingate: lattice QCD can help

Null Test From Charm

- Charm CPV not established. △A_{cp}
 - \blacksquare HFAG = $(0.33\pm0.12)\%$
 - **LHCb** π^{\pm} tags (-0.34±0.18)%, μ^{\pm} tags (0.49±0.37)%
 - □ My view $|\Delta A_{cp}|$ <(1- ϵ)%, where ϵ ~0.5 (more data needed)
 - A very useful constraint on NP models
- Not a null test: Charm mixing firmly established at 1% level, likely long distance effect $D^0 \Rightarrow \pi\pi(KK)(...) \Rightarrow \bar{D}^0$, but x´& y´ parameters not yet well measured

Null Tests from B CPV

- \bullet ϕ_s : 0.01±0.07±0.01 rad
 - □ potential use of all the $B_s \rightarrow J/\psi K^+K^-$ rate (see Van Leerdam's talk)
- A_{SL}^s x3 statistics available
- Both important to search for NP

Seeking NP at higher masses (Coco)

- Since Higgs couples to mass we should do what we can on top quarks especially where we can do better than ATLAS & CMS despite the factor of 10 less ∫L
- Strassler points out other searches for new Higgs decays or new long lived particles

 Can also search for Majorana neutrinos from D, B or even W decays

tt asymmetry

- Seen in CDF & D0
- (By the way getting fed up with disproving CDF/D0 results hinting at NP, e.g. ϕ_s , A_{sl})
- Because LHC is at larger η asymmetry is larger than in ATLAS/CMS due to more qq and qg scattering
- Use t→Wb, W→μν,
- Predictions of signal & background from Kagan, Kamenik, Perez & Stone arXiv:1103.3747

Predictions for LHCb

- t→Wb, W→ $\mu\nu$ signal $_{100.0}$ $^{\sqrt{s}}$ =7 TeV
- W+light quark jet including charm scaled to ATLAS measured σ.
- Single top production
- W+b jet (not from top)
- bb with one b→µ, reduced by jet isolation (anti-kt jet algorithm used)
- light dijet's reduced by b tagging, jet isolation
 & u id

Necessary Ingredients for t→bW

- W[±]→µ[±]v detection
- Jet reconstruction and energy measurement
 - Require large efficiency for high p_T, and energy resolution so that σ_{m(μ-jet)}~20 GeV
- Algorithm for b-jet tagging
 - Measurement of tagging efficiency (ε)
 - Measurement of light quark rejection (R)
 - Requirement is R>100:1 for ε>50%

Current LHCb (Barter)

Jet energy scale determined to 1% from Z+1 jet events

■ For p_T>10 GeV jet energy resolution is 10-

15%

 b-jet tagging: for 50% eff have 99.5% light quark rejection. bb asymmetry already measured

tt asymmetry measurement is ready for prime time

Much other physics (Strassler)

My view -- Highest priority for LHCb for Long-Lived Particles: Higgs boson decays

- We know at least one exists!
- The Higgs decays via weak couplings/loops/off-shell W/Z and is very sensitive to new particles.
- · Must develop comprehensive knowledge of this particle
- Tough Target: Many final states difficult for ATLAS/CMS
- · But if you can do it, many Higgs-related searches will exclude other models too
- For long-lived particles, LHCb has a niche
 - Low masses (0.1? 100? GeV)
 - Short lifetimes (ps 100 ps)
 - Complex final states with multiple (possibly clustered) vertices
 - Final states with 1 or 0 leptons and many hadrons
 - Fortunately this is an extremely interesting niche because it is where the Higgs boson sits

Conclusions Conclusions

- Recall Prime Objective: to seek out and find new physics wherever it may be hiding
- We have a great deal to do even with current data: many areas not discussed in this workshop, e.g. CPV in B°, B_s etc...light meson spectroscopy: qq versus tetraquark, etc..
- Much to do with jets, right-handed currents, γ, V_{ub}, K^(*)μμ, even charm
- It will be fun!
- Much thanks to our theory friends for coming

Pleasant Dreams!

LHCb discovers New Physics

EMC

Signal example

Predicted cross-section difference between t and t̄ in the Z´ model of Jung et al. [arXiv:0907.4112]

Tueso

35