Correlations between Flavour Observables in NP Models

Jennifer Girrbach

Institute for Advanced Study, Technical University Munich (TUM)

A. Buras, JG: [arXiv:1306.3775], A. Buras, JG: [arXiv:1309.2466]
 A. Buras, F. De Fazio, JG, M. V. Carlucci: JHEP 1301 [arXiv:1211.1237]
 A. Buras, F. De Fazio, JG: JHEP 1302 [arXiv:1211.1296]
 A. Buras, F. De Fazio, JG, R. Knegjens, M. Nagai, JHEP 1306 [arXiv:1303.3723]
 A. Buras, R. Fleischer, JG, R. Knegjens, JHEP 1306 [arXiv:1303.3820]
 A. Buras, JG: JHEP 1301 [arXiv:1206.3878]

3rd workshop on implications of LHCb measurements and future prospects

14-16th October 2013

Greetings from Andrzej!

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

3 x 3

< /₽ > < ∃ >

How to find NP in flavour physics?

- CKM parameters should be determined by means of tree-level decays ⇒ no NP pollution
- Lattice: non-perturbative parameters should have small uncertainties
- study many different observables and their correlations

Predictions on correlations among flavour observables provide the path to identify which NP model, if any at all, is realized in nature

< 日 > < 同 > < 回 > < 回 > < 回 > <

Test of constrained MFV

$$\frac{\mathcal{B}(B_s \to \mu^+ \mu^-)}{\mathcal{B}(B_d \to \mu^+ \mu^-)} = \frac{\hat{B}_d}{\hat{B}_s} \frac{\tau(B_s)}{\tau(B_d)} \frac{\Delta M_s}{\Delta M_d}$$

$$\begin{split} S_{\psi\phi}^{\text{exp}} &= -(0.04^{+0.10}_{-0.13})\\ \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\text{exp}} &= (2.9 \pm 0.7) \times 10^{-9}\\ \mathcal{B}(B_d \to \mu^+ \mu^-)^{\text{exp}} &= (3.6^{+1.6}_{-1.4}) \times 10^{-10} \end{split}$$

$$\begin{split} S^{\rm SM}_{\psi\phi} &= 0.038 \pm 0.005 \\ \overline{\mathcal{B}} (B_s \to \mu^+ \mu^-)^{\rm SM} &= (3.56 \pm 0.18) \cdot 10^{-9} \\ \mathcal{B} (B_d \to \mu^+ \mu^-)_{\rm SM} &= (1.05 \pm 0.07) \times 10^{-10} \end{split}$$

[Buras,JG,Guadagnoli,Isidori,2012], [De Bruyn, Fleischer, Knegjens, Koppenburg, Merk, 2012], [Buras, Fleischer, JG, Knegjens, 2013]

$$\left[\frac{\mathcal{B}(B_d \to \mu^+ \mu^-)}{\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)}\right]_{\text{exp}} \approx (4.3 \pm 1.8) \left[\frac{\mathcal{B}(B_d \to \mu^+ \mu^-)}{\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)}\right]_{\text{SM/CMFV}}$$

What happens in other NP models?

14-16th October 2013 LHCb workshop

Jennifer Girrbach TUM-IAS

Models with a $U(2)^3$ symmetry

- Global flavour symmetry $G_F = U(2)_Q \times U(2)_u \times U(2)_d$ (MFV: $U(3)^3$) [Pomarol, Tommasini: hep-ph/9507462; Barbieri, Dvali, Hall: hep-ph/9512388; Barbieri, Buttazzo, Isidori, Jones-Perez, Lodone, Sala, Straub: 1105.2296, 1108.5125, 1203.4218, 1203.4218
- third generation is treated separately
- K system governed by MFV structure; B_d and B_s system correlated:

triple correlation $S_{\psi\phi} - S_{\psi Ks} - |V_{ub}|$ For different values of $|V_{ub}|$: 0.0046 (blue)- 0.0028 (purple) [Buras, JG: 1206.3878]

< 日 > < 同 > < 回 > < 回 > < 回 > <

Tensions in the Flavour data

$$S_{\psi \kappa_s} - |\varepsilon_{\kappa}|$$
 tension $\longleftrightarrow |V_{ub}|$ problem

• SM: $S_{\psi Ks} = \sin 2\beta$, $|\varepsilon_K| \propto \sin 2\beta |V_{cb}|^4$: 3.2 σ discrepancy [Buras, Guandagnoli, Phys. Rev. D 78 (2008), Lunghi, Soni, Phys. Lett. B 708 (2012)] • $\beta_{\text{true}} = \beta_{\text{true}} (|V_{ub}|, \gamma)$

• exclusive (small) $|V_{ub}|$: $S_{\psi K_s}$ in agreement with data, $|\varepsilon_K|$ below the data • inclusive (large) $|V_{ub}|$: $S_{\psi K_s}$ above data, $|\varepsilon_K|$ in agreement with data

New particles?

heavy gauge boson, heavy (pseudo) scalar, heavy (vectorial) fermion

Assumptions: tree-level flavour changing couplings

- 331 models: $SU(3)_C \times SU(3)_L \times U(1)_X$: left-handed Z' FCNCs A. Buras, F. De Fazio, JG, M. V. Carlucci, [1211.1237]
- A Minimal Theory of Fermion Masses: model with new vectorlike fermions and tree-level Z⁰ FCNCs A. Buras, JG, R. Ziegler, [1301.5498]
- Flavour-changing couplings: $\Delta_L^{bs} = -\tilde{s}_{23}e^{-i\delta_{23}}$, etc.

- Left-handed Scenario (LHS): $\Delta_L^{bq} \neq 0$ and $\Delta_R^{bq} = 0$ • Right-handed Scenario (RHS): $\Delta_L^{bq} = 0$ and $\Delta_R^{bq} \neq 0$
- Subscript Scenario (LRS): $\Delta_L^{bq} = \Delta_R^{bq} \neq 0$
- Asymmetric Left-Right Scenario (ALRS): $\Delta_L^{bq} = -\Delta_R^{bq} \neq 0$

Strategy

• $\Delta F = 2$ observables [A. Buras, F. De Fazio, JG: JHEP 1302 [1211.1896]]

$$B_d:\,\Delta M_d\,,\,S_{\psi K_{\pmb{s}}}\,,\qquad B_s:\,\Delta M_s\,,\,S_{\psi \phi}\,,\qquad K:\,\Delta M_K\,,\,\varepsilon_K$$

• Include $\Delta F = 1$ observables and find correlations

$$\begin{array}{lll} B_{s,d} \to \mu^+ \mu^- & S^{s,d}_{\mu\mu} & B \to K^{(*)} \ell^+ \ell^- & B \to K^{(*)} \nu \bar{\nu} & B \to X_s \nu \bar{\nu} \\ K^+ \to \pi^+ \nu \bar{\nu} & K_L \to \pi^0 \nu \bar{\nu} & K_L \to \mu^+ \mu^- \end{array}$$

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

- ロ ト - 4 同 ト - 4 回 ト

$\Delta F = 2$ constraints: Oases in parameter space

A. Buras, F. De Fazio, JG: JHEP **1302** [1211.1896] A. Buras, F. De Fazio, JG, M. V. Carlucci: JHEP **1301** [1211.1237]

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

イロト イポト イヨト イヨト

э

Finding oases in parameter space in LHS for Z' $M_{Z'} = 1 \text{ TeV}, C_{B_e} = 0.93 \pm 0.05, C_{B_J} = 0.92 \pm 0.05, |V_{ub}| = 0.0034$ $16.9 \mathrm{ps}^{-1} \le \Delta M_s \le 18.7 \mathrm{ps}^{-1}, \quad -0.20 \le S_{\psi\phi} \le 0.20,$ $0.48 \text{ps}^{-1} < \Delta M_d \le 0.53 \text{ps}^{-1}, \quad 0.64 \le S_{\psi K_S} \le 0.72$ ΔM₈ & S_{thb}, LHS1 ΔMd & SWKs, LHS1 ε ^δ23 ô13 3 2 0.000 0.005 0.010 0.015 0.000 0.001 0.002 0.003 0 004 S 23 Š13

Same approach for RHS, LRS, ALRS and also for H^0/A^0 case Inclusion of $\Delta F = 1$ observables helps to select the optimal pases

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

Same approach for RHS, LRS, ALRS and also for H^0/A^0 case Inclusion of $\Delta F = 1$ observables helps to select the optimal pases

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

$U(2)^3$ limit

- Global flavour symmetry $U(2)_Q \times U(2)_u \times U(2)_d$ broken *minimally* by three spurions
- K system governed by MFV structure; B_d and B_s system correlated:

B_s sector for Z', H^0 and A^0 scenario

Some definitions before:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = \left[rac{1-y_s^2}{1+\mathcal{A}_{\Delta\Gamma}^{\mu\mu}y_s}
ight]\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-),$$

Time-dependent tagged rate asymmetry:

$$\frac{\Gamma(B_s^0(t) \to \mu^+\mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-)}{\Gamma(B_s^0(t) \to \mu^+\mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-)} = \frac{S_{\mu\mu}\sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma}^{\mu\mu}\sinh(y_s t/\tau_{B_s})}$$

$$\left(\mathcal{A}^{\mu\mu}_{\Delta\Gamma}
ight)^{\mathsf{SM}}=1\,,\qquad S^{\mathsf{SM}}_{\mu\mu}=0$$

 $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ can also be determined through measurement of effective lifetime

[A. Buras, R. Fleischer, JG, R. Knegjens, JHEP 1306 [1303.3820]]

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

general Z' scenarios: B_s sector

triple correlation: $S_{\psi\phi} - B_s \rightarrow \mu^+ \mu^- - S^s_{\mu\mu}$ [Buras, De Fazio, JG, 1211.1896] green: compatible with $b \rightarrow s \ell^+ \ell^-$ [Altmannshofer,Straub, 1206.0273, 1308.1501]

500

general H^0/A^0 scenarios: B_s sector

Buras,De Fazio,JG,Knegjens,Nagai,[1303.3723]; Buras,Fleischer,JG,Knegjens,[1303.3820] LHS: Pseudoscalar vs scalar; magenta/cyan: $U(2)^3$ limit with excl/incl. $|V_{ub}|$

For different $C_{B_s} = 0.90 \pm 0.01$ (blue), 0.96 ± 0.01 (green), 1.00 ± 0.01 (red), 1.04 ± 0.01 (cyan), 1.10 ± 0.01 (yellow) Lepton coupling $\bar{\Delta}_A^{\mu\bar{\mu}} = 0.5 \text{ TeV}^{-1}$ (left) and 1.0 TeV^{-1} (right) black: excluded due to (simplified) $b \rightarrow s\ell^+\ell^-$ constraints by Altmannshofer and Straub

Jennifer Girrbach TUM-IAS

(日) (得) (目) (日) []

Tree-level Z⁰ FCNCs

Lepton couplings fixed and mass scale fixed

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

Z^0 FCNCs: B_d sector

- $B_d \rightarrow \mu^+ \mu^-$: effects small in MFV, CMFV and Z', but large in Z⁰ FCNCs
- $S_{\psi K_s}$ vs $B_d \rightarrow \mu^+ \mu^- \Rightarrow$ Enhancement possible [Buras,De Fazio,JG,1211.1896]

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

 $B_d \rightarrow \mu^+ \mu^-$ versus $B_s \rightarrow \mu^+ \mu^-$

For LHS Z scenario

[A. Buras, JG, 1309.2466]

 $C_{B_d} = 0.96 \pm 0.01, \ C_{B_s} = 1.00 \pm 0.01, \ 0.639 \le S_{\psi K_s} \le 0.719$ and $-0.15 \le S_{\psi \phi} \le 0.15$. Left $|V_{ub}| = 0.0034$, right $|V_{ub}| = 0.0040$.

Jennifer Girrbach TUM-IAS

- 4 同 6 4 日 6 4 日 6

э

 $B_d \rightarrow \mu^+ \mu^-$ versus $B_s \rightarrow \mu^+ \mu^-$

For LHS Z' scenario

[A. Buras, JG, 1309.2466]

 $C_{B_d} = 1.04 \pm 0.01$, $C_{B_s} = 1.00 \pm 0.01$, $\bar{\Delta}_A^{\mu\bar{\mu}} = 1 \text{ TeV}^{-1}$, $0.639 \le S_{\psi K_s} \le 0.719$, $-0.15 \le S_{\psi\phi} \le 0.15$. Left $|V_{ub}| = 0.0034$, right $|V_{ub}| = 0.0040$.

(人間) トイヨト イヨト

э

"DNA-charts"

[Buras, JG; Review 1306.3775]

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Jennifer Girrbach TUM-IAS

< 日 > < 同 > < 回 > < 回 > < 回 > <

20/22

э

Summary

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

◆□ > ◆□ > ◆豆 > ◆豆 > ─ 豆

Summary

Z' scenarios:

- Small tensions in $\Delta F = 2$ observables can be removed
- RHS: strong constraints from $b o s \ell^+ \ell^-$, LRS: no effects in $B_{s,d} o \mu^+ \mu^-$
- $K \to \pi \bar{\nu} \nu$ important role to flavour-violating Z' masses outside the reach of the LHC

 H^0/A^0 scenarios:

- rich pattern of NP effects in $B_{d,s}$ system but only small effects in K sector
- correlations between $S_{\psi\phi}$, $\mathcal{B}(B_s \to \mu^+ \mu^-)$ and $S^s_{\mu^+ \mu^-}$: differences between A^0 , H^0 and Z' case due to spin and CP-parity

Both scalar and Z' scenarios

• $U(2)^3$ symmetry \rightarrow prediction for correlation of $S_{\psi\phi}$ vs $B_s \rightarrow \mu^+\mu^-$ ($|V_{ub}|$ dependence!)

Z scenarios:

• Data for $B_{s,d} \to \mu^+ \mu^-$ can be understood but not $B \to K^* \mu^+ \mu^-$ (vector couplings to muons too small)

≣ ୬**୯**୯

• very large effects in $K o \pi ar{
u}
u$ possible (bounded by $K_L o \mu^+ \mu^-$)

Thanks for your attention

Backup slides

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

< □ > < @ > < 注 > < 注 > ... 注

Recent highlights of flavour physics

There were hopes to find clear signals of NP in
$$\boxed{igsires_{\psi\phi}}$$
 and $\mathcal{B}(B_{s,d} o \mu^+\mu^-)$

LHCb/CMS measurement and SM predictions:

$$\begin{split} S^{\text{exp}}_{\psi\phi} &= 0.001 \pm 0.087 \,, \qquad \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\text{exp}} = (2.9 \pm 0.7) \times 10^{-9} \\ &\qquad \mathcal{B}(B_d \to \mu^+ \mu^-)^{\text{exp}} = (3.6^{+1.6}_{-1.4}) \times 10^{-10} \end{split}$$

$$\begin{split} S^{\mathsf{SM}}_{\psi\phi} &= 0.038 \pm 0.005 \,, \qquad \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\mathsf{SM}} = (3.56 \pm 0.18) \cdot 10^{-9} \\ &\qquad \mathcal{B}(B_d \to \mu^+ \mu^-)_{\mathsf{SM}} = (1.05 \pm 0.07) \times 10^{-10} \end{split}$$

[Buras, JG, Guadagnoli, Isidori, 2012], [De Bruyn, Fleischer, Knegjens, Koppenburg, Merk, 2012], [Buras, Fleischer, JG, Knegjens, 2013]

But so far everything is consistent with SM prediction

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

→ → 得 → → 三 → → 三 三

$B_s \rightarrow \mu^+ \mu^-$: How to compare theory and experiment

- $\mathcal{B}(B_{s}
 ightarrow \mu^{+}\mu^{-})_{\mathsf{SM}} = (3.25 \pm 0.17) \cdot 10^{-9}$ [Buras, JG, Guadag noli, Isidori, 2012]
- LHCb: $\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)_{\text{LHCb/CMS}} = (2.9 \pm 0.7) \times 10^{-9}$
- Comparing th. branching ratio with exp. data ⇒ correction factor needed which takes care of ΔΓ_s effects (th. BR is for flavour eigenstates)

$$\begin{split} \mathcal{B}(B_s \to \mu^+ \mu^-) &= r(y_s) \ \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-) & \text{[De Bruyn et al. 2012]} \\ r(y_s) &= \frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma} y_s} , \qquad \qquad y_s = 0.088 \pm 0.014 \,, \qquad \text{SM}: \mathcal{A}_{\Delta\Gamma} = 1 \end{split}$$

Include r(y_s) either in th. branching ratio:

$$\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \frac{\mathcal{B}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}}}{r(y_s)} = (3.53 \pm 0.18) \cdot 10^{-3}$$

or in experimental value: ${\cal B}(B_s o \mu^+ \mu^-)_{
m LHCb} = (2.6 \pm 0.6) imes 10^{-9}$

Jennifer Girrbach TUM-IAS

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

New particles?

• What is the first new particle beyond the SM Higgs to be discovered?

heavy gauge boson, heavy (pseudo) scalar, heavy (vectorial) fermion

If too heavy for direct discovery \Rightarrow High precision flavour experiments

- Z' = a neutral, colourless, spin-1 gauge boson that is a carrier of a new force based on a U(1)'
- additional U(1)' symmetry appears in many extensions of the SM:
 - 331 models: SU(3)_C × SU(3)_L × U(1)_X
 A. Buras, F. De Fazio, JG, M. V. Carlucci: JHEP 1301
 [1211.1237]
 - GUT models, e.g. SO(10)
 ightarrow SU(5) imes U(1)'
 - Left-Right symmetric models: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Finding oases in parameter space in LHS for Z'

Oases for $M_{Z'} = 1$ TeV and $|V_{ub}| = 0.0034$ (left) $|V_{ub}| = 0.0040$ (right)

Same approach for RHS, LRS, ALRS and also for H^0/A^0 case Inclusion of $\Delta F = 1$ observables helps to select the optimal cases

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

K sector for Z' scenario

 $K^+ \to \pi^+ \nu \bar{\nu}$ is CP conserving and $K_L \to \pi^0 \nu \bar{\nu}$ is CP violating both dominated by Z penguins; theoretically very clean

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

general Z' scenarios: K sector

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$$
 vs $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ (LHS/RHS)

no difference between LHS and RHS (vector currents) Black region: excluded by $\mathcal{B}(K_L \to \mu^+ \mu^-) \leq 2.5 \cdot 10^{-9}$, black line: GN bound

Concrete example with tree-level Z' FCNCs: 331 model based on $SU(3)_C \times SU(3)_L \times U(1)_X$

Main difference to general Z' scenarios:

lepton couplings are fixed and connection between $B_{d,s}$ and K sector \Rightarrow only small effects in ε_K , $K_L \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$
331 model: $SU(3)_C \times SU(3)_L \times U(1)_X$

Theoretical features:

- breaking $SU(3)_L \rightarrow SU(2)_L \Rightarrow$ new heavy neutral gauge boson Z'
- different treatment of 3^{rd} gen. $\Rightarrow Z'$ mediates FCNC at tree level
- requirement of anomaly cancellation and asymptotic freedom of QCD ⇒ number of generations fixed to N = 3!

[Frampton; Pisano, Pleitez, 1992]

・ロト ・得ト ・ヨト ・ヨト - ヨ

Flavour structure of 331

• Fermions: triplets, anti-triplets and singlets (w.r.t $SU(3)_L$)

$$\begin{pmatrix} e \\ -\nu_e \\ \nu_e^c \end{pmatrix}_L, \begin{pmatrix} \mu \\ -\nu_\mu \\ \nu_\mu^c \end{pmatrix}_L, \begin{pmatrix} \tau \\ -\nu_\tau \\ \nu_\tau^c \end{pmatrix}_L, \begin{pmatrix} u \\ d \\ D \end{pmatrix}_L, \begin{pmatrix} c \\ s \\ S \end{pmatrix}, \begin{pmatrix} b \\ -t \\ T \end{pmatrix}_L$$

$$e_R, \mu_R, \tau_R, \quad u_R, d_R, c_R, s_R, t_R, b_R, \quad D_R, S_R, T_R$$

• Z' coupling generation non-universal $(a \neq b)! \Rightarrow$ tree-level FCNC $\propto (b - a)$

$$\begin{aligned} \mathcal{L}^{Z'} &= J_{\mu} Z'^{\mu} , \qquad V_{\mathsf{CKM}} = U_{L}^{\dagger} V_{L} , \\ J_{\mu} &= \bar{u}_{L} \gamma_{\mu} U_{L}^{\dagger} \begin{pmatrix} a & \\ & a \\ & & b \end{pmatrix} U_{L} u_{L} + \bar{d}_{L} \gamma_{\mu} V_{L}^{\dagger} \begin{pmatrix} a & \\ & a \\ & & b \end{pmatrix} V_{L} d_{L} , \end{aligned}$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

only left-handed (LH) quark currents are flavour-violating

- V_L parametrized by $\tilde{s}_{12}, \tilde{s}_{23}, \tilde{s}_{13}, \delta_{1,2,3} \rightarrow U_L = V_L V_{CKM}^{\dagger}$
- B_d sector depends on \tilde{s}_{13}, δ_1 B_s sector depends on \tilde{s}_{23}, δ_2 K sector depends on $\tilde{s}_{13}, \tilde{s}_{23}, \delta_2 - \delta_1$

Finding the optimal oases

•
$$S_{\psi\phi}$$
 vs. $B_s
ightarrow \mu^+ \mu^-$ and $S^s_{\mu^+\mu^-}$ vs. $S_{\psi\phi}$

- small effects in $B_d o \mu^+ \mu^-$
- small effects in ε_K , $K_L \to \pi^0 \bar{\nu} \nu$ and $K^+ \to \pi^+ \bar{\nu} \nu$
- $S_{\psi K_s} \varepsilon_K$ tension solved using inclusive $|V_{ub}| = 0.004$

Z^0 FCNCs: K sector

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ versus $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ in LHS, RHS and LRS

black points excluded due to $K_L \rightarrow \mu^+ \mu^$ branch unaffected by $K_L \rightarrow \mu^+ \mu^-$ constraint survives

・ロト ・得ト ・ヨト ・ヨト - ヨ

14-16th October 2013 LHCb workshop

Left-handed Z' and Z FCNC quark couplings facing new $b \rightarrow s \mu^+ \mu^-$ data

[Buras, JG; 1309.2466]

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

36/22

Anomaly in
$$B o K^* \mu^+ \mu^-$$

- 24 angular observables
- good agreement with SM predictions but three deviations
- SM values [Altmannshofer, Straub, 1308.1501]

$$\langle F_L \rangle = 0.77 \pm 0.04, \quad \langle S_4 \rangle = 0.29 \pm 0.07, \quad \langle S_5 \rangle = -0.14 \pm 0.02$$

LHCb

 $\langle F_L \rangle_{[1,6]} = 0.59 \pm 0.08, \quad \langle S_4 \rangle_{[14.2,16]} = -0.07 \pm 0.11, \quad \langle S_5 \rangle_{[1,6]} = 0.10 \pm 0.10$

• $\langle F_L \rangle$ and $\langle S_5 \rangle_{[1,6]}$ can be explained by negative C_9^{NP} (and $C_{7\gamma}^{\text{NP}}$) [Altmannshofer, Straub, 1308.1501; Descotes-Genon, Matias, Virto, 1307.5683]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Correlations in LHS and ALRS

Magenta: $C_9^{NP} = -1.6 \pm 0.3$ Cyan: $C_9^{NP} = -0.8 \pm 0.3$

Jennifer Girrbach TUM-IAS

Image: A matrix and a matrix

4 E b

э

B_d sector for Z' and A^0 scenario

$$\begin{split} \mathcal{B}(B_d \to \mu^+ \mu^-)_{\mathsf{SM}} &= (1.05 \pm 0.07) \cdot 10^{-10} \\ \mathcal{B}(B_d \to \mu^+ \mu^-)_{\mathsf{exp}} &= (3.6^{+1.6}_{-1.4}) \times 10^{-10} \end{split}$$

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

 $S_{\psi K_{S}}$ versus $\mathcal{B}(B_{d} \to \mu^{+}\mu^{-})$ for $M_{Z'} = 1 = M_{A^{0}}$ TeV: rather small effects

 $\mathcal{B}(B_d o \mu^+ \mu^-)_{ ext{SM}} = (1.05 \pm 0.07) \cdot 10^{-10}, \quad \mathcal{B}(B_d o \mu^+ \mu^-)_{ ext{exp}} \le 9.4 \cdot 10^{-10}$

Comparison Z', H^0 and A^0 case in LHS

- Lepton couplings varied in wider range
- For RHS the Z' range is much smaller due to $b o s \ell^+ \ell^-$ constraints
- In LRS: no effects in $B_s \rightarrow \mu^+ \mu^-!$

A model with new vectorlike fermions and tree-level Z^0 FCNCs

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

Minimal Theory of Fermion Masses (MTFM)

Idea: explain SM fermion masses and mixings by their dynamical mixing with new heavy vectorlike fermions

- simplified: $\mathcal{L} \propto m\bar{f}F + M\bar{F}F + \lambda hFF$
- light SM fermions have admixture of heavy fermions with explicit mass terms
- \Rightarrow corrections to Z^0 , W^{\pm} and Higgs couplings to quarks \rightarrow tree-level FCNCs!
- central formulae:

$$m_{ij}^{X} = v \varepsilon_{i}^{Q} \varepsilon_{j}^{X} \lambda_{ij}^{X}, \qquad (X = U, D), \qquad \varepsilon_{i}^{Q, U, D} = \frac{m_{i}^{Q, U, D}}{M_{i}^{Q, U, D}}$$

Assumptions

[Buras,Gorjean,Pokoski,Ziegler 1105.3725], [Buras,JG,Ziegler 1302.5498]

- reduce number of parameters such that it is still possible to reproduce SM Yukawas and suppress flavour violation \Rightarrow identify minimal FCNC effects.
- TUM (Trivially Unitary Model):
 - Universality of heavy masses $M_i^Q = M_i^U = M_i^D = M$ Unitarity of the Yukawa matrices $\lambda^{U,D}$ with $\lambda^U = 1$

 - TUM: after fitting SM quark masses and $V_{\rm CKM} \Rightarrow$

• Fitting $m_t \Rightarrow 0.8 \le arepsilon_3^Q \le 1$ and we set M=3 TeV

- 《得》 《글》 《글》 - 글

Phenomenology

- Flavour changing Z⁰ couplings
- NP effects in B_{s,d} mixings negligible
- large effects in ε_K and $K_L \to \mu^+ \mu^-$ possible, but NP effects in ε_K bounded by $K_L \to \mu^+ \mu^-$

• TUM favours $|V_{ub}|pprox$ 0.0037 and $M\geq$ 3 TeV ightarrow $S_{\psi K_{m{s}}}pprox$ 0.72 a bit to high

Phenomenology

• *B* decays: CMFV-like but $B_{s,d}
ightarrow \mu^+ \mu^-$ enhanced by pprox 35% relative to SM

• Enhancement of $K \to \pi \bar{\nu} \nu$ and correlation of $K_L \to \pi^0 \bar{\nu} \nu$ and $K^+ \to \pi^+ \bar{\nu} \nu$ non-CMFV like

Stringent test of CMFV

[Buras, JG; 1304.6835]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

3

Test of CMFV using $\Delta F = 2$ data

- $\Delta F=2$ data for $\Delta M_{s,d}$, $arepsilon_{K}$, $S_{\psi K_{m{s}}}$ very precise
- Which values $|V_{cb}|$, $F_{B_s}\sqrt{\hat{B_s}}$, $F_{B_d}\sqrt{\hat{B_d}}$ needed to fit the data (SM/CMFV)?
- CMFV: $S_0(x_t) \rightarrow S(v) \geq S_0(x_t)$
- CMFV: $\gamma = (66.6^{\circ} \pm 3.7^{\circ})$. LHCb: $\gamma = (67.2^{\circ} \pm 12^{\circ})$

Overview of determination of various quantities

[Buras, JG; 1304.6835]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$|V_{cb}|$$
 vs $F_{B_q}\sqrt{\hat{B}_q}$ within CMFV

 $\gamma = 63^{\circ}/67^{\circ}/71^{\circ}$ (green, red, blue) $S_{\psi K_{s}} \in [0.659, 0.699]$ fixed S(v) = 2.4 (cyan), $\eta_{cc} = 1.87$, $\eta_{ct} = 0.496$

Decrease of $F_{B_s}^2 \hat{B}_{B_s}$ and $F_{B_d}^2 \hat{B}_{B_d}$ needed and/or increase of $|V_{cb}|$

Uncertainty due to η_{cc}

- $\eta_{cc} = 1.87 \pm 0.77$ (error of 41%) enters ε_K
- reduce uncertainty using $\Delta M_K^{exp} \Rightarrow \eta_{cc} \approx 1.70 \pm 0.21$ (error of 12%)

 $\begin{array}{l} \gamma \in [63^{\circ}, 71^{\circ}] \\ \text{Yellow: } S(v) \in [2.31, 2.8], \ \eta_{cc} = 1.87, \ \eta_{ct} = 0.496 \\ \text{Purple: } S(v) \in [2.31, 2.8], \ \eta_{cc} \in [1.10, 2.64], \ \eta_{ct} \in [0.451, 0.541] \\ \text{Cyan: } S(v) \in [2.31, 2.8], \ \eta_{cc} \in [1.49, 1.91], \ \eta_{ct} \in [0.451, 0.541] \\ \text{Blue: } S(v) \in [2.31, 2.8], \ \eta_{cc} \in [1.49, 1.91], \ \eta_{ct} = 0.496 \\ \text{Black: as purple but with fixed } S(v) = S_0(x_t) = 2.31 \\ \Rightarrow \quad e^{\frac{1}{2}} \Rightarrow \quad e^{\frac{1}{2$

general Z' scenarios: K sector

 $\mathcal{B}(K_L \to \mu^+ \mu^-)$ vs $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ and LH vs RH senario;

 $K_L \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ are not useful for the search of RH currents as they are sensitive only to the vector couplings but $\mathcal{B}(K_L \to \mu^+ \mu^-)$ sensitive to axial-vector coupling

- 4 得 2 4 き 2 4 き 2 - き

Further NP models by many authors

- MFV/CMFV
- THDM
- Fourth Generation (SM4) [Eberhardt, Herbert, Lacker, Lenz, Menzel, Nierste, Wiebusch '12]

SM4 is excluded at 5.3σ

- Supersymmetry, MSSM (tan eta important for $B_s o \mu^+ \mu^-$)
- (SUSY) GUT models
- Left-Right Symmetric Models
- Randall-Sundrum Model
- Little Higgs Model

・ロト ・得ト ・ヨト ・ヨト - ヨ

Generalizations

General Z' and Scalar (H^0/A^0) models

• both left- and right-handed Z'/Scalar FCNC couplings

$$\overbrace{j_{\beta}}^{Z'} i_{\alpha} \quad i\gamma_{\mu}\delta_{\alpha\beta} \left[\Delta_{L}^{ij}(Z')P_{L} + \Delta_{R}^{ij}(Z')P_{R} \right] \quad \underbrace{H^{0}}_{j\beta} \quad i\delta_{\alpha\beta} \left[\Delta_{L}^{ij}(H^{0})P_{L} + \Delta_{R}^{ij}(H^{0})P_{R} \right]$$

- different scenarios: LHS, RHS, LRS, ALRS
- both $|V_{ub}|$ scenarios (S1: excl.; S2: incl.)
- at first: no correlation between K, B_d and B_s systems
- Difference to 331: assumptions about lepton couplings

- 4 同 6 - 4 三 6 - 4 三 6

Phenomenology in $MU(2)^3$

ΔF = 2 observables:

$$\begin{split} S_{\psi K_{\boldsymbol{S}}} &= \sin(2\beta + 2\varphi_{\text{new}}) \,, \\ \Delta M_{\boldsymbol{s},\boldsymbol{d}} &= \Delta M_{\boldsymbol{s},\boldsymbol{d}}^{\text{SM}} r_{\boldsymbol{B}} \,, \end{split}$$

[Buras, JG: 1206.3878]

$$S_{\psi\phi} = \sin(2|\beta_s| - 2\varphi_{\text{new}}),$$

$$\varepsilon_K = r_K \varepsilon_K^{\text{SM,tt}} + \varepsilon_K^{\text{SM,cc+ct}}$$

For different values of $|V_{ub}|$: 0.0046 (blue)– 0.0028 (purple) negative $S_{\psi\phi}$ only for small $|V_{ub}|$ possible incl. $|V_{ub}|$: $S_{\psi\phi} \ge S_{\psi\phi}^{SM}$ Determine $|V_{ub}|$ in $MU(2)^3$ with $S_{\psi\phi}$ and $S_{\psi Ks}$

Phenomenology in $MU(2)^3$

• $\Delta F = 2$ observables:

[Buras, JG: 1206.3878]

$$\begin{split} S_{\psi K_{s}} &= \sin(2\beta + 2\varphi_{\text{new}}), \qquad S_{\psi \phi} = \sin(2|\beta_{s}| - 2\varphi_{\text{new}}), \\ \Delta M_{s,d} &= \Delta M_{s,d}^{\text{SM}} r_{B}, \qquad \varepsilon_{K} = r_{K} \varepsilon_{K}^{\text{SM,tt}} + \varepsilon_{K}^{\text{SM,cc+ct}} \end{split}$$

Particle content of $\overline{331}$ model

Fermions: triplets, anti-triplets and singlets (w.r.t $SU(3)_L$)

$$\begin{pmatrix} e \\ -\nu_e \\ \nu_e^c \end{pmatrix}_L, \begin{pmatrix} \mu \\ -\nu_\mu \\ \nu_\mu^c \end{pmatrix}_L, \begin{pmatrix} \tau \\ -\nu_\tau \\ \nu_\tau^c \end{pmatrix}_L, \begin{pmatrix} u \\ d \\ D \end{pmatrix}_L, \begin{pmatrix} c \\ s \\ S \end{pmatrix}, \begin{pmatrix} b \\ -t \\ T \end{pmatrix}_L$$

$$e_R, \mu_R, \tau_R, \quad u_R, d_R, c_R, s_R, t_R, b_R, \quad D_R, S_R, T_R$$

Gauge bosons:

$$\begin{split} & \mathcal{W}^{\pm}, Y^{\pm Q_{Y}}, V^{\pm Q_{Y}} \\ & \mathcal{W}^{3}, \mathcal{W}^{8}, X \xrightarrow[\theta_{331}]{\text{mix}} \mathcal{W}^{3}, B, Z' \xrightarrow[\theta_{W}]{\text{mix}} \mathcal{A}, Z, Z' \qquad \text{with } \cos \theta_{331} = \beta \tan \theta_{W} \end{split}$$

Higgs sector: triplets and sextet $(u \gg v, v', w)$

$$\langle \chi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\0\\u \end{pmatrix} \quad \langle \rho \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v\\0 \end{pmatrix} \langle \eta \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v'\\0\\0 \end{pmatrix} \quad \langle S \rangle = \frac{1}{2} \begin{pmatrix} 0&0&0\\0&0&w\\0&w&0 \end{pmatrix}$$

Flavour structure of 331

 Z' coupling generation non-universal (a ≠ b)! ⇒ neutral currents are affected by quark mixing ⇒tree-level FCNC

$$\mathcal{L}^{Z'} = J_{\mu} Z'^{\mu}, \qquad V_{\mathsf{CKM}} = U_{L}^{\dagger} V_{L},$$

$$J_{\mu} = \bar{u}_{L} \gamma_{\mu} U_{L}^{\dagger} \begin{pmatrix} \mathsf{a} \\ \mathsf{a} \\ \mathsf{b} \end{pmatrix} U_{L} u_{L} + \bar{d}_{L} \gamma_{\mu} V_{L}^{\dagger} \begin{pmatrix} \mathsf{a} \\ \mathsf{a} \\ \mathsf{b} \end{pmatrix} V_{L} d_{L},$$

FCNC $\propto (b-a)$

- only left-handed (LH) quark currents are flavour-violating
- V_L parametrized by $\tilde{s}_{12}, \tilde{s}_{23}, \tilde{s}_{13}, \delta_{1,2,3} \rightarrow U_L = V_L V_{CKM}^{\dagger}$
- B_d sector depends on \tilde{s}_{13}, δ_1 B_s sector depends on \tilde{s}_{23}, δ_2 K sector depends on $\tilde{s}_{13}, \tilde{s}_{23}, \delta_2 - \delta_1$

(ロ) (雪) (雪) (ヨ) ヨ

331 model: technical stuff

- charge operator: $\hat{Q} = \hat{T}^3 + \beta \hat{T}^8 + X \mathbb{1}$ with hypercharge $\frac{\hat{Y}}{2} = \beta \hat{T}^8 + X \mathbb{1}$. The coefficient β determines particle content of particular model
- gauge bosons of $SU(3)_L$: W^{\pm} , $Y^{\pm Q_Y}$, $V^{\pm Q_V}$ ($\beta = 1/\sqrt{3}$: $Q_Y = 1, Q_V = 0$)
- Yukawa interaction

$$\begin{split} \mathcal{L}_{Yuk} &= \qquad \lambda_{i,a}^{d} \bar{Q}_{i} \rho d_{a,R} + \lambda_{3,a}^{d} \bar{Q}_{3} \eta^{\star} d_{a,R} \\ &+ \qquad \lambda_{i,a}^{u} \bar{Q}_{i} \eta u_{a,R} + \lambda_{3,a}^{u} \bar{Q}_{3} \rho^{\star} u_{a,R} \\ &+ \qquad \lambda_{i,j}^{J} \bar{Q}_{i} \chi J_{j,R} + \lambda_{3,3}^{J} \bar{Q}_{3} \chi^{\star} T_{R} + h.c. \end{split}$$

 Q_i , i = 1, 2: left-handed triplets; Q_3 left-handed anti-triplet; $J_{1,2} = D$, S; a = 1, 2, 3 with $d_{(1,2,3)R} = d_R$, s_R , b_R and $u_{(1,2,3)R} = u_R$, c_R , t_R .

$$\begin{pmatrix} u'_L \\ c'_L \\ t'_L \end{pmatrix} = U_L^{-1} \begin{pmatrix} u_L \\ c_L \\ t_L \end{pmatrix}, \qquad \begin{pmatrix} d'_L \\ s'_L \\ b'_L \end{pmatrix} = V_L^{-1} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}$$

Jennifer Girrbach TUM-IAS

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

Particle content of $\overline{331}$ model

$$\begin{split} \psi_{1,2,3} &= \begin{pmatrix} e \\ -\nu_e \\ \nu_e^c \end{pmatrix}, \quad \begin{pmatrix} \mu \\ -\nu_\mu \\ \nu_\mu^c \end{pmatrix}, \quad \begin{pmatrix} \tau \\ -\nu_\tau \\ \nu_\tau^c \end{pmatrix} \sim (\mathbf{1}, \mathbf{\bar{3}}, -\frac{1}{3}) \\ Q_{1,2} &= \begin{pmatrix} u \\ d \\ D \end{pmatrix}, \quad \begin{pmatrix} c \\ s \\ S \end{pmatrix} \sim (\mathbf{3}, \mathbf{\bar{3}}, 0) \\ Q_3 &= \begin{pmatrix} b \\ -t \\ T \end{pmatrix} \sim (\mathbf{3}, \mathbf{\bar{3}}, \frac{1}{3}) \\ e^c, \mu^c, \tau^c \sim -1 \\ \nu_e^c, \nu_\mu^c, \nu_\tau^c \sim 0 \\ d^c, s^c, b^c \sim \frac{1}{3} \\ u^c, c^c, t^c \sim -\frac{2}{3} \\ T^c \sim -\frac{2}{3} \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Notes

331:

- same operator structure as SM and CMFV except that the one-loop master functions become complex and non-universal
- $\Delta F = 2$ observables \rightarrow identify four allowed oases \rightarrow inclusion of $\Delta F = 1$ observables can select the opimal oases (correlation $B_s \rightarrow \mu^+ \mu^- S_{\psi\phi} S^s_{\mu^+\mu^-}$) play prominent role.
- these correlation should allow to monitor how this model will face the data in the coming years
- anomaly-free: number of triplets = number of antitriplets (take into account the three colours of quarks) ⇒...two quark generations triplets and one antitriplet.
- $V^{\pm Q_{V}}$, $Y^{\pm Q_{Y}}$ couple to SM leptons but not to SM quarks (only to new heavy quarks) $\rightarrow V$, Y have letpon number $L = \pm 2$ but no lepten generation number (\rightarrow lepton flavour/number violation not correlated with quark flavour violation)

◆□▶ ◆□▶ ★∃▶ ★∃▶ ∃ りぬの

Notes

331:

• in some 331 models, e.g. $eta=\sqrt{3}$ the Z' mass is bounded from above

$$\frac{g_X^2}{g^2} = \frac{6\sin^2\theta_W}{1 - (1 + \beta^2)\sin^2\theta_W}$$

 $\beta = \sqrt{3}$: $\sin^2 \theta_W(M_{Z'}) < \frac{1}{4}$; $\sin^2 \theta_W(M_Z) \simeq 0.23 \Rightarrow M_{Z'}$ below a few TeV

• reproduce data for $\Delta M_{d,s}$ within $\pm 5\%$ and 2σ for $S_{\psi\phi}, S_{\psi\kappa s}$

$$\begin{split} & 16.9 / \mathrm{ps} \leq \Delta M_s \leq 18.7 / \mathrm{ps}, \quad -0.18 \leq S_{\psi\phi} \leq 0.18, \\ & 0.48 / \mathrm{ps} \leq \Delta M_d \leq 0.53 / \mathrm{ps}, \quad 0.64 \leq S_{\psi K s} \leq 0.72. \end{split}$$

• Increase of $M_{Z'}$ allows to increases \tilde{s}_{13} , \tilde{s}_{23} by the same factor \rightarrow impact on rare $B_{s,d}$ decays (smaller for larger $M_{Z'}$). In rare K decays increase of $M_{Z'}$ is compensated by the increase of \tilde{s}_{13} and $\tilde{s}_{23} \Rightarrow$ decays practically do not depend on $M_{Z'}$. In ε_K the same phenomenon even increases the room for NP effects with increasing $M_{Z'}$ for values of several TeV, where all FCNC constraints can be satisfied.

331: *K* sector

- correlation between $K_L \to \pi^0 \bar{\nu} \nu$ and $K^+ \to \pi^+ \bar{\nu} \nu$ (independent of $M_{Z'}$) but far below exp. sensitivity
- no $\Delta M_{d,s} \varepsilon_K$ tension (that is present in CMFV)

What happens for $M_{Z'} = 10$ TeV?

- Increase $\tilde{s}_{13,23} \Rightarrow \Delta F = 2$ in $B_{d,s}$ fine
- effects in ε_K get larger (as long as $\Delta^{sd}(Z') < \max$. value) \Rightarrow even exclusive V_{ub} possible
- effects in rare B/K decays suppressed and thus SM like

Summary 331 model

- FCNC from Z' in quark sector (purely left-handed), no FCNC in lepton sector
- favours inclusive (large) $|V_{ub}| \approx 0.0040 \rightarrow$ removes $\varepsilon_K S_{\psi K_S}$ "tension"
- correlations between observables that differ from CMFV models
- ullet consistent with data for $B_{s,d} o \mu^+ \mu^-$ but can still differ from SM prediction
- triple correlation $B_s o \mu^+\mu^- S_{\psi\phi} S^s_{\mu^+\mu^-}$ important test of the model
- Z' contributions to $b \to s \nu \bar{\nu}$ transitions, $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ are found typically below 5 10%
- our analysis helps to monitor the future confrontations of the 331 model with the data

◆□▶ ◆□▶ ★∃▶ ★∃▶ ∃ りぬの

Notes to Z'

Difference to 331

- also RH currents
- K sector decoupled from $B_{d,s}$ sector at fundamental level
- significant effects in ε_K and rare K decays possible
- Z' couplings to neutrinos and charged leptons not fixed from the model
- analysis for both $|V_{ub}|$ values

For 1 TeV $\leq M_{Z'} \leq$ 3 TeV indirect Z' effects can be tested by rare K and B decays: effects up to 50% in BR and measurable effects in CP-asymmetries. For $M_{Z'} \geq$ 5 TeV NP effects typically below 10% but larger effects allowed in rare K decays.

Notes to Z'

- In $K_L \to \pi^0 \nu \bar{\nu}$ vs $K^+ \to \pi^+ \nu \bar{\nu}$ plots: horizontal line $\to NP$ contributions is real; second branch parallel to GN bound $\to NP$ contribution is purely imaginary
- change from LHS to RHS: no change in $\Delta F = 2$; in $\Delta F = 1$ with Y function: the two big oases changes \rightarrow not possible to distinguish between the two big oases from $B_s \rightarrow \mu^+\mu^-$, $S_{\psi\phi}$ and $S^s_{\mu^+\mu^-}$.
- $K_L \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ are not useful for the search of RH currents as they are sensitive only to the vector couplings
- LR scenario: NP contributions to $\Delta F = 2$ are dominated by LR operators (enhanced by RG effects) \rightarrow other oases; NP contributions to $B_{s,d} \rightarrow \mu^+ \mu^$ and $K_L \rightarrow \mu^+ \mu^-$ vanish; important role $b \rightarrow s/d\bar{\nu}\nu$ transitions and $B \rightarrow K^{(*)}\mu^+\mu^-$
- Anomally cancellation \Rightarrow existence of new (vector-like) fermions ("exotics", ν_R)
- For $M_{Z'} \leq 3$ TeV deviations from SM in $B_{d,s}$ and K meson systems. For $M_{Z'} \geq 5$ TeV effects below 10% in $B_{d,s}$ decays, but $K \rightarrow \pi \nu \bar{\nu}$ and

Jennifer Girrbach TUM-IAS

14-16th October 2013 LHCb workshop

MTFM: The model I

$$u_{Ri}, d_{Ri}, q_{Li} = \begin{pmatrix} u_{Li} \\ d_{Li} \end{pmatrix} \qquad i = 1, 2, 3$$
$$U_{Ri}, U_{Li}, D_{Ri}, D_{Li}, Q_{Ri} = \begin{pmatrix} U_{Ri}^{Q} \\ D_{Ri}^{Q} \end{pmatrix}, Q_{Li} = \begin{pmatrix} U_{Li}^{Q} \\ D_{Li}^{Q} \end{pmatrix} \qquad i = 1, 2, 3.$$

 $\begin{aligned} -\mathcal{L} &= \tilde{h} \lambda_{ij}^U \bar{Q}_{Li} U_{Rj} + h \lambda_{ij}^D \bar{Q}_{Li} D_{Rj} + M_i^U \bar{U}_{Li} U_{Ri} + M_i^D \bar{D}_{Li} D_{Ri} + M_i^Q \bar{Q}_{Ri} Q_{Li} \\ &+ m_i^U \bar{U}_{Li} u_{Ri} + m_i^D \bar{D}_{Li} d_{Ri} + m_i^Q \bar{Q}_{Ri} q_{Li} + \text{h.c.} \end{aligned}$

$$\begin{split} -\mathcal{L}_{\mathrm{eff}} &\supset \frac{g}{\sqrt{2}} \left(W^+_{\mu} j^{\mu-}_{\mathrm{charged}} + \mathrm{h.c.} \right) + \frac{g}{2c_{\mathrm{w}}} Z_{\mu} j^{\mu}_{\mathrm{neutral}} \\ &+ \overline{u}_{Li} m^U_{ij} u_{Rj} + \overline{d}_{Li} m^D_{ij} d_{Rj} + \frac{H}{\sqrt{2}} \left(\overline{u}_{Li} y^U_{ij} u_{Rj} + \overline{d}_{Li} y^D_{ij} d_{Rj} \right) + \mathrm{h.c.} \end{split}$$

$$\begin{split} m_{ij}^{X} &= v \bar{\varepsilon}_{i}^{Q} \bar{\varepsilon}_{j}^{X} \lambda_{ij}^{X} - \frac{v}{2} \left(A_{L}^{X} \right)_{ik} \bar{\varepsilon}_{k}^{Q} \bar{\varepsilon}_{j}^{X} \lambda_{kj}^{X} - \frac{v}{2} \left(A_{R}^{X} \right)_{kj} \bar{\varepsilon}_{i}^{Q} \bar{\varepsilon}_{k}^{X} \lambda_{ik}^{X} ,\\ y_{ij}^{X} &= \frac{m_{ij}^{X}}{v} - \left(A_{L}^{X} \right)_{ik} \bar{\varepsilon}_{k}^{Q} \bar{\varepsilon}_{j}^{X} \lambda_{kj}^{X} - \left(A_{R}^{X} \right)_{kj} \bar{\varepsilon}_{i}^{Q} \bar{\varepsilon}_{k}^{X} \lambda_{ik}^{X} . \end{split}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

MTFM: The model II

$$\begin{split} j^{\mu-}_{\mathrm{charged}} &= \overline{u}_{Li} \left[\delta_{ij} - \frac{1}{2} \left(A^U_L \right)_{ij} - \frac{1}{2} \left(A^D_L \right)_{ij} \right] \gamma^{\mu} d_{Lj} + \overline{u}_{Ri} \left(A^{UD}_R \right)_{ij} \gamma^{\mu} d_{Rj} ,\\ j^{\mu}_{\mathrm{neutral}} &= \overline{u}_{Li} \left[\delta_{ij} - \left(A^U_L \right)_{ij} \right] \gamma^{\mu} u_{Lj} + \overline{u}_{Ri} \left(A^U_R \right)_{ij} \gamma^{\mu} u_{Rj} \\ &- \overline{d}_{Li} \left[\delta_{ij} - \left(A^D_L \right)_{ij} \right] \gamma^{\mu} d_{Lj} - \overline{d}_{Ri} \left(A^D_R \right)_{ij} \gamma^{\mu} d_{Rj} - 2s^2_{\mathrm{w}} j^{\mu}_{\mathrm{elmag}} \end{split}$$

In Unitary Model (still in flavour eigenstates):

$$\begin{aligned} \left(A_{L}^{U}\right)_{ij} &= \frac{v^{2}}{\bar{M}^{2}} \bar{\varepsilon}_{i}^{Q} \bar{\varepsilon}_{j}^{Q} \delta_{ij} \\ \left(A_{R}^{UD}\right)_{ij} &= \frac{v^{2}}{\bar{M}^{2}} \bar{\varepsilon}_{i}^{U} \bar{\varepsilon}_{j}^{D} \lambda_{kj}^{D} \lambda_{ki}^{*U} \\ \left(A_{R}^{U}\right)_{ij} &= \frac{v^{2}}{\bar{M}^{2}} \bar{\varepsilon}_{i}^{U} \bar{\varepsilon}_{j}^{U} \delta_{ij} \\ \end{aligned}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで
MTFM: The model III: Rotating to mass eigenstates

 $m_{ij}^X = v \lambda_{ij}^X \varepsilon_i^Q \varepsilon_j^X$, $V_L^{X\dagger} m^X V_R^X = m_{diag}^X$, X = U, D, $V_{CKM} = (V_L^U)^{\dagger} V_L^D$. Unitary Model:

$$\Delta_L^{ij}(Z) = -\frac{s}{2c_W} (A_L^D)_{ij} ,$$

$$\Delta_R^{ij}(Z) = \frac{g}{2c_W} (\tilde{A}_R^D)_{ij} .$$

$$\begin{split} \Delta_{L}^{ij}(W) &= \frac{g}{2\sqrt{2}} \left[\left(\tilde{A}_{L}^{U} V_{\mathsf{CKM}} \right)_{ij} + \left(V_{\mathsf{CKM}} \tilde{A}_{L}^{D} \right)_{ij} \right], \\ \Delta_{R}^{ij}(W) &= -\frac{g}{\sqrt{2}} \left(\tilde{A}_{R}^{UD} \right)_{ij}. \end{split}$$

MTFM: Couplings in TUM

$$\begin{split} \tilde{A}_{L}^{U} &= \frac{1}{M_{U}^{2}} \text{diag} \left(\frac{m_{u}^{2}}{\varepsilon_{1}^{U2}}, \frac{m_{c}^{2}}{\varepsilon_{2}^{U2}}, \frac{m_{t}^{2}}{\varepsilon_{3}^{U2}} \right) = \frac{v^{2}}{M_{U}^{2}} \text{diag} \left(\varepsilon_{1}^{Q2}, \varepsilon_{2}^{Q2}, \varepsilon_{3}^{Q2} \right) ,\\ \tilde{A}_{R}^{U} &= \frac{1}{M_{Q}^{2}} \text{diag} \left(\frac{m_{u}^{2}}{\varepsilon_{1}^{Q2}}, \frac{m_{c}^{2}}{\varepsilon_{2}^{Q2}}, \frac{m_{t}^{2}}{\varepsilon_{3}^{Q2}} \right) = \frac{v^{2}}{M_{Q}^{2}} \text{diag} \left(\varepsilon_{1}^{U2}, \varepsilon_{2}^{U2}, \varepsilon_{3}^{U2} \right) ,\\ \tilde{A}_{L}^{D} &= \frac{v^{2}}{M_{D}^{2}} V_{\mathsf{CKM}}^{\dagger} \text{diag} \left(\varepsilon_{1}^{Q2}, \varepsilon_{2}^{Q2}, \varepsilon_{3}^{Q2} \right) V_{\mathsf{CKM}} ,\\ \tilde{A}_{R}^{D} &= \frac{1}{M_{Q}^{2}} m_{\mathsf{diag}}^{D} V_{\mathsf{CKM}}^{\dagger} \text{diag} \left(\frac{1}{\varepsilon_{1}^{Q2}}, \frac{1}{\varepsilon_{2}^{Q2}}, \frac{1}{\varepsilon_{3}^{Q2}} \right) V_{\mathsf{CKM}} m_{\mathsf{diag}}^{D} ,\\ \tilde{A}_{R}^{UD} &= \frac{1}{M_{Q}^{2}} m_{\mathsf{diag}}^{U} \text{diag} \left(\frac{1}{\varepsilon_{1}^{Q2}}, \frac{1}{\varepsilon_{2}^{Q2}}, \frac{1}{\varepsilon_{3}^{Q2}} \right) V_{\mathsf{CKM}} m_{\mathsf{diag}}^{D} . \end{split}$$

$$\begin{split} & \frac{\varepsilon_1^Q}{\varepsilon_2^Q} = |V_{us}|X_{12}, \quad \frac{\varepsilon_1^Q}{\varepsilon_3^Q} = |V_{ub}|X_{13}, \quad \frac{\varepsilon_2^Q}{\varepsilon_3^Q} = |V_{cb}|X_{23}, \\ & \left[V_{ij}^{\text{CKM}}\right]_{\text{eff}} = V_{ij}^{\text{CKM}} \left(1 - \frac{v^2}{M^2} \varepsilon_i^{Q^2}\right). \end{split}$$

- TUM only 4 new parameters after fitting SM quark masses and V_{CKM}
- tree-level flavour violating Z couplings to quarks
- TUM favours $|V_{ub}| \approx 0.0037$ and $M \ge 3$ TeV
- negligible effects in $B_{d,s}$ sector $\rightarrow S_{\psi K s} \approx 0.72$ a bit to high
- NP effects in ε_{κ} bounded by $K_L \rightarrow \mu^+ \mu^-$
- Pattern in *B* decays: CMFV-like but, $B_{s,d} \rightarrow \mu^+\mu^-$ enhanced by $\approx 35\%$ relative to SM values
- Enhancement of $K \to \pi \bar{\nu} \nu$ and correlation of $K_L \to \pi^0 \bar{\nu} \nu$ and $K^+ \to \pi^+ \bar{\nu} \nu$ non-CMFV like

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●