ttbar @ LHCb

Rhorry Gauld

Contents

- Production at high pseudorapidity
- Theoretical uncertainties
 - top mass
 - scale
 - α_s
 - Parton Distribution Functions
- Constraining the <u>gluon PDF</u>

Conclusions

top mass

$$\hat{\sigma}(\beta) = \underbrace{\alpha_s^2}_{m^2} \left(\sigma_{ij}^{(0)} + \alpha_s \sigma_{ij}^{(1)} + \alpha_s^2 \sigma_{ij}^{(2)} + \mathcal{O}(\alpha_s^3) \right)$$

TeVatron combination $8.7 fb^{-1}$

 $173.20 \pm 0.51(stat) \pm 0.71(sys)GeV/c^2$

arXiv:1305.3929

arXiv:1305.3892 M. Czakon et al.

$$\delta m_t = 1 GeV \to \delta \sigma^{LHCb} = 3\%$$

scale

Completion of inclusive NNLO calculation <u>arXiv:1303.6254</u> M. Czakon, P. Fielder, A. Mitov

arXiv:1305.3892 M. Czakon et al.

$\delta \sigma^{LHCb}$ (NLO)	$+13.9\% \\ -14.2\%$
NNLO	$+4.0\%\ -6.4\%$
NNLO+NNLL	$+2.6\% \\ -3.4\%$

PDF uncertainties

high-x gluon PDF un-constrained

uncertainty generally grows with increasing x

Remark:ttbar at LHCb still dominated by gg-scattering (slide 7)

Compare PDF uncertainty: inclusive vs LHCb cross-section

 $\delta PDF \to \delta \sigma^{NLO} = ^{+4.4\%}_{-4.2\%}$

$$\left(\delta PDF \to \delta \sigma^{LHCb} = ^{+6.9\%}_{-5.5\%}\right)$$

summary of uncertainties

Order PDF $\sigma(pb) = \delta_{scale} (pb)$		δ_{PDF} (pb)	δ_{α_s} (pb)	$\delta_{m_t} \; (\mathrm{pb})$	δ_{total} (pb)			
NNL(O/L)			172.5	$+4.6 (+2.7\%) \\ -6.0 (-3.5\%)$	+8.0(+4.6%) -6.5(-3.8%)	$+3.7 (+2.2\%) \\ -3.7 (-2.2\%)$	$+8.0\ (+4.6\%)\ -7.7\ (-4.4\%)$	$+16.5 (+9.5\%) \\ -16.7 (-9.7\%)$
NLO CT10 1		148.3	$+17.7 (+11.9\%) \\ -19.2 (-12.9\%)$	+6.6(+4.4%) -6.1(-4.2\%)	+1.9(+1.3%) -1.9(-1.3%)	+6.6(+4.6%) -6.4(-4.4\%)	$+27.2 (+18.4\%) \\ -28.2 (-19.0\%)$	
	LHCb		19.9	$^{+2.6}_{-2.7} (+13.3\%)$ $^{-2.7}_{-13.7\%}$	$+1.4 (+6.9\%) \\ -1.1 (-5.5\%)$	$+0.3 (+1.7\%) \\ -0.3 (-1.7\%)$	+0.9(+4.8%) -0.9(-4.8%)	$^{+4.4}_{-4.2} \left(^{+21.9\%}_{(-21.2\%)}\right)$
NNL(O/L)			177.2	$\begin{array}{r} +4.8 & (+2.7\%) \\ -4.2 & (-2.3\%) \end{array}$	$^{+4.0}_{-6.4} (+2.3\%)$	$+3.0\ (+1.7\%)\ -3.0\ (-1.7\%)$	$+8.1 (+4.6\%) \\ -7.8 (-4.4\%)$	$+14.3 (+8.1\%) \\ -14.7 (-8.3\%)$
	NLO	HERA	136.1	$^{+15.6}_{-16.3} \left(^{+11.5\%}_{(-12.0\%)} ight)$	+3.9(+2.9%) -3.4(-2.5%)	$^{+1.4}_{-1.4} (+1.0\%)$ $^{-1.4}_{-1.0\%} (-1.0\%)$	$^{+6.3}_{-6.1}(+4.6\%)$	$^{+23.1}_{-23.4} (+17.0\%) \\ ^{-23.4}_{(-17.2\%)}$
	LHCb		16.9	$^{+2.1}_{-2.0} \left(^{+12.3\%}_{-12.0\%} ight)$	$+0.5 (+2.9\%) \\ -0.3 (-1.6\%)$	$+0.2 (+1.2\%) \\ -0.2 (-1.2\%)$	$+0.8 (+4.9\%) \\ -0.8 (-4.8\%)$	$^{+3.1\ (+18.1\%)}_{-2.9\ (-17.2\%)}$
NNL(O/L)			172.0	$+4.4 (+2.6\%) \\ -5.8 (-3.4\%)$	$^{+4.7}_{-4.7} (+2.7\%) \\ ^{-4.7}_{-2.7\%} (-2.7\%)$	$+2.9\ (+1.7\%)\ -2.9\ (-1.7\%)$	$+8.0\ (+4.6\%)\ -7.7\ (-4.4\%)$	$+14.1 (+8.2\%) \\ -15.2 (-8.9\%)$
	NLO	MSTW	158.4	$^{+19.6}_{-21.2} (+12.4\%)$	$^{+4.0}_{-5.5} (+2.6\%)$	$^{+2.1}_{-2.1} (+1.3\%)$ $^{-2.1}_{-1.3\%} (-1.3\%)$	$+7.0\ (+4.6\%)\ -6.9\ (-4.4\%)$	$^{+27.9}_{-30.3} \left(^{+17.6\%}_{(-19.1\%)} ight)$
	LHCb		20.8	$^{+2.9}_{-2.9}(+13.9\%)$ $^{-2.9}_{-14.2\%}$	$+0.7 (+3.2\%) \\ -0.9 (-4.2\%)$	$+0.3 (+1.5\%) \\ -0.3 (-1.5\%)$	$+1.0 (+4.8\%) \\ -1.0 (-4.8\%)$	$+4.1 (+19.9\%) \\ -4.3 (-20.8\%)$
NN]	L(O/L)		172.7	$+4.6 (+2.7\%) \\ -6.0 (-3.5\%)$	+5.2 (+3.0%) -5.2 (-3.0%)	$^{+2.7}_{-2.7} (+1.6\%) \\ ^{-2.7}_{-1.6\%} (-1.6\%)$	$+8.0\ (+4.6\%)\ -7.8\ (-4.5\%)$	+14.5 (+8.4%) -15.8 (-9.1%)
	NLO	NNPDF	158.6	$^{+19.3}_{-20.5} \left(^{+12.2\%}_{(-12.9\%)} ight)$	$+4.0 (+2.5\%) \\ -4.0 (-2.5\%)$	$^{+2.4}_{-2.4} (+1.5\%)$ $^{-2.4}_{-1.5\%} (-1.5\%)$	$+7.1 (+4.6\%) \\ -7.0 (-4.5\%)$	+27.8(+17.5%) -28.9(-18.2%)
	LHCb		20.2	$^{+2.8}_{-2.7}(^{+14.0\%})_{(-13.3\%)}$	$+0.7~(+3.3\%)\ -0.7~(-3.3\%)$	$+0.4 (+1.8\%) \\ -0.4 (-1.8\%)$	$^{+1.0}_{-0.9}(+4.9\%)$	$^{+4.1}_{-3.9}(-19.4\%)$

potential precision 7 TeV

Expected number of events?

Consider muon + b-jet final state

POWHEG(NLO)->pythia8 anti-kt R = 0.5 jets ST, tch = t-channel single top

Kinematic cuts: $\mu p_T > 20 \ GeV$
 $b-jet p_T > 60 \ GeV$
 $\mu, b-jet \eta \in [2.0 - 4.5]$ Isolation: $\Delta R(\mu, jet) > 0.5$
b mis-tag = 1%
b efficiency = 70%
muon efficiency = 75%

potential precision 14 TeV

Expected number of events?

Consider muon + b-jet final state

POWHEG(NLO)->pythia8 anti-kt R = 0.5 jets ST, tch = t-channel single top

Kinematic cuts: $\mu p_T > 20 \ GeV$
 $b-jet p_T > 60 \ GeV$
 $\mu, b-jet \eta \in [2.0 - 4.5]$ Isolation: $\Delta R(\mu, jet) > 0.5$
b mis-tag = 1%
b efficiency = 70%
muon efficiency = 75%

what can LHCb provide?

perform a PDF re-weighting based on LHCb cross-section measurement at 14TeV with 4, 6, 8% exp. uncertainty

$$W_{k}(\chi_{k}^{2}) = (\chi_{k}^{2})^{\frac{1}{2}(N_{pts.}-1)} \exp(-\frac{1}{2}\chi_{k}^{2})$$
$$\langle X \rangle_{new} = \mathcal{N} \sum_{k=1}^{N_{PDF}} W_{k}(\chi_{k}^{2})X_{k}$$

1

Actually an under-estimate!!

- I year of I3/I4 TeV no longer stat. limited
- A cross-section measurement can strongly constrain the high-x gluon PDF
- Necessary ingredients:
 - Wjets measurement
 - high pT b-jet tagger trained vs light jets
 - all background modelling NLO+
 - differential NNLO ttbar

ttbar cross-sections for various final states. uncertainty is combined scale, PDF and showering contributions Same cuts as slide 13, sub-leading/non b-jets pT > 20 GeV

$d\sigma({\rm fb})$	7 TeV			$8 { m TeV}$			$14 { m TeV}$		
lb	285	±	52	504	\pm	94	4366	\pm	663
lbj	97	\pm	21	198	\pm	35	2335	\pm	323
lbb	32	\pm	6	65	\pm	12	870	\pm	116
lbbj	10	\pm	2	26	\pm	4	487	\pm	76
l^+l^-	44	\pm	9	79	\pm	15	635	\pm	109
l^+l^-b	19	\pm	4	39	\pm	8	417	\pm	79

Backups - asymmetry source

$$C_{planar} = \frac{1}{16N_c^2} (f_{abc}^2 + d_{abc}^2)$$

$$C_{crossed} = \frac{1}{16N_c^2} (-f_{abc}^2 + d_{abc}^2)$$

where I used,

$$d_{abc}^{2} = Tr[\{T^{a}, T^{b}\}T^{c}]^{2}$$

$$d_{abc}^{2} = (N_{c}^{2} - 1)(N_{c}^{2} - 4)/N_{c}$$

$$f_{abc}^{2} = (N_{c}^{2} - 1)N_{c}$$

1. J.H.Kuhn, G. Rodrigo, arXiv:hep-ph/9807420 [hep-ph]

- comes from colour!
- effect is $\mathcal{O}(\alpha_s^3)$
- diluted by symmetric gg

Backups - asymmetry at 7/8 TeV?

Backups - published ttbar asymmetry results

$$\begin{split} A_c &= \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \\ A_c^{SM} &= 1.15\% \quad \textbf{7TeV} \\ A_c^{ATLAS}(4.71fb^{-1}) &= 2.9 \pm 1.8 \pm 1.4\% \\ A_c^{CMS}(5.0fb^{-1}) &= 0.4 \pm 1.0 \pm 1.1\% \\ \Delta|y| &= |y_t| - |y_{\bar{t}}| \end{split}$$

Backups - asymmetry at 7/8 TeV?

Backups - controlling shower effects

Backups - truth b-tag matching

