Introduction: Complementary searches for new physics with LHCb

Victor Coco

CERN

October 14, 2013

Direct searches BSM and forward production measurements.

Four Experimental/Theory talks (Monday afternoon, Wednesday morning):

- Top: Rhorry Gauld (Pheno.), Cedric Delaunay (Th.)
- Jets: Will Barter (Exp.), German Rodrigo (Th.)
- Long lived particles: Pieter David (Exp.), Matthew Strassler (Th.)
- Higgs: Clara Matteuzzi (Exp.), Florian Domingo (Th.)

In this talk:

- LHCb specificities.
- Complementarity domains and niches.
- Highlights of experimental objects and triggers wrt. GPDs.

Complementarity with GPDs

Detector configuration

Unique capabilities in the forward region:

- Tracking and vertexing
- Muon and hadron identification.
- b-jets identification.

Direct searches and production measurements:

- Luminosity penalty of a factor 8, 3.2 fb^{-1} up to now, \sim 50 fb^{-1} for upgraded LHCb.
- $\bullet\,$ Low pile-up condition $\mu\sim 2$
- Complementarity domains: Forward coverage 2 < η < 5 Low p_T triggers.

tracking, ECAL, HCAL, muon, hadron PID

Complementarity with GPDs

Some examples

EW, softQCD, charmonium production measurements:

- W and Z boson production in the forward region. JHEP 06 (2012) 058, JHEP 01 (2013) 111, JHEP 02 (2013) 102
- Charmonium production down to 0 p_T. JHEP 02 (2013) 041,JHEP 06 (2013) 064, ERJ C 71 (2011) 1645
- Charged particles multiplicities in the forward region. ERJ C 72 (2012) 1947

Search for $\Phi_0 \rightarrow \tau \tau$, JHEP 05 (2013) 132

- Model independent search, limit on forward Higgs production.
- MSSM in $m_{h^0}^{max}$ scenario limits not as stringent as GPD.

LHCb Trigger

HLT 1:

- Displaced tracks.
- Single and Di- μ , displaced or prompt.
- Single-e high p_T.
- Few technical and dedicated lines.

HLT 2:

- ${\, \bullet \, }$ Inclusive selections for B, D, e, $\mu.$
- Exclusive selections

Few words on the Topological trigger LHCb-PUB-2011-002:

- 2, 3 or 4 displaced track vertices + MVA selection: efficient and pure on exclusive B decays.
- $\bullet\,$ Act as a b-jet trigger. $\epsilon_{b-jet}\sim$ 30% for $p_T>15\,\,GeV.$
- Already used in $A_{b\bar{b}}^{FC}$ analysis LHCb-CONF-2013-001

• High pile up condition in GPD \rightarrow high- p_T trigger thresholds.

from A. Hoecker, M. Pierini, "Trigger for SUSY in ATLAS/CMS"

	ATLAS	CMS
Single- μ	$p_T > 24 \ GeV$	$p_T > 24 \text{ GeV}$, $p_T > 40 \text{ GeV}$ not isolated
$Double extsf{-}\mu$	$p_T > 13, 13$ GeV or $p_T > 18, 8$ GeV	$p_T > 17,8 GeV (p_T > 13,8 GeV parked)$

In LHCb combination of prompt and displaced muons with low p_T, m_{μμ} thresholds.
HLT2 inclusive μ-lines:

	Prompt	Detached
Single- μ	$p_{T} > 10 GeV$	$p_{T} > 1.3 \text{ GeV} (IP > 0.5 mm, IP\chi^2 > 200)$
$Double$ - μ	${\sf m}_{\mu\mu}>$ 4.8 GeV	${f m}_{\mu\mu}>$ 2.95 GeV $(DLS>5)$

HLT2 reconstruction getting closer and closer to offline reconstruction.

- Possibility to build more complex objects allowing lower thresholds on single/double-µ.
- Thresholds will remain similar in Run II.

Victor Coco (CERN)

(b-)Jets

• Several flavour of jet based trigger in GPDs balance thresholds with multiplicity.

from A. Hoecker, M. Pierini, "Trigger for SUSY in ATLAS/CMS"

	ATLAS	CMS
Single-jet	$p_T > 360 \ GeV$	$p_T > 320 GeV$
Multi-jet	$4(5) imes p_T > 80(55) \ GeV$	$4 imes p_T > 80(50 \text{ parked}) \text{ GeV}$
Multi-jet and b-tag	$4 \times p_T > 45$ GeV and a b-tag	-

• More on jet reconstruction at LHCb in Will Barter's talk.

• Inclusive b-triggers can be used as b-jet trigger.

• Jet based trigger will be investigated for Run 2.

Example of inclusive offline selections under investigation:

• Selection for 3b and 4b events adding jet info: 1(2) b-tag and $4 \times p_{T jet} > 16(8)$ GeV, 2 b-tag and $3 \times p_{T jet} > 11$ GeV.

Long lived particles (LLP)

Signature: displaced heavy vertex

Benchmark channel: Hidden Valley model, $H \to \pi_v^0 \pi_v^0 \to b \bar{b} b \bar{b}$, where π_v^0 is the LLP

Strassler, Zurek Phys. Lett. B651 (2007) 374

Two triggering approach:

- Displaced vertex object dedicated trigger ATLAS PRL 108 (2012) 251801 \rightarrow sensitivity to low masses not to low proper time ($c\tau_{min} \sim 1 m$).
- Inclusive jet trigger, CMS-PAS-EXO-12-038 \rightarrow sensitivity to low proper time not to low masses.
- Displaced vertex object dedicated trigger at LHCb.
- Region of sensitivity complementary to GPDs: low mass ($20 < m_{\pi_v^0} < 50 \text{ GeV}$) and low proper time ($c\tau \sim O(cm)$).
- Trigger strategy for semi-leptonic and fully leptonic decay of LLP in place too.

- There are regions of the phase space not accessible to ATLAS/CMS because of the high-luminosity condition and pseudo-rapidity coverage.
- LHCb is able to cover the low mass objects flying up to O(10 cm) in the forward region.
- Hlt2 has lots of flexibility to trigger those objects.

Open questions:

- Are there signatures we might have triggered already and we should search for?
- Should we include some more specific signatures in our trigger?
- Are there production measurements in forward region we should focus on?

Backup

Complementarity with GPDs

Some examples

Low pile-up conditions ease exclusive production measurements:

- J/ψ and $\psi(2S)$ in 2010 JPG 40 (2013) 045001, 2011 just approved.
- Ongoing studies of hadron production.
- Program might be extended in Run II with high-y shower counters.

Top production asymmetry:

- Dilution due gg-production smaller the in central detectors.
- b-tagged jets allow to reduce the background in $\mu + {\rm jet}$ final state
- LHCb potential investigated in Kagan *et al.*, *PRL 107 (2011) 082003* and LHCb-PUB-2013-009.

• HLT1:

- Single- μ prompt : $p_T > 4.8 \text{ GeV}, p > 8 \text{ GeV}$
- Single- μ displaced : $p_T > 1$. GeV, p > 8 GeV, IP > 0.1 mm, $IP\chi^2 > 16$
- $\circ~$ Double- $\mu~$ prompt : $m_{\mu\mu}>2.7~$ GeV , $p_{T}>0.5~$ GeV , p>6~ GeV
- \circ Double- μ displaced : $m_{\mu\mu} > 1$ GeV, $p_T > 1$ GeV, p > 6 GeV, $IP\chi^2 > 3$

HLT2 inclusive lines:

- Single- μ prompt $p_T > 10$ GeV.
- $_{\odot}$ Single- μ detached $p_{T}>1.3~GeV, IP>0.5, IP\chi^{2}>200.$
- Double- μ prompt $m_{\mu\mu} > 4.8$ GeV (recheck)
- Double- μ detached $m_{\mu\mu}$ > 2.95 GeV,DLS > 5

	(Unprescaled) Object	Trigger Th	reshold (GeV)
	Single Electron		80	
2	Single Isolated Electron		27	1
≥	Double Electron	(17, 8)		_
		Single e/y	20	13
	11	Double e/y	13,7	8

ഗ	Offline colection	Trigger sel	ection
Ŕ	offine selection	L1	EF
	Single electron p_{τ} > 25 GeV	18 GeV	24 GeV
4	2 electrons, each p ₇ > 15 GeV	2x10 GeV	2x12 GeV

- In LHCb combination of prompt high p_T electron and displaced tracks with low thresholds can be used.
- For $p_T > 12 15$ GeV, good ID but poor momenta estimation (ECAL saturation).
- HLT1:
 - Single-e prompt : $p_T > 10 \text{ GeV}, p > 20 \text{ GeV}$
 - No dedicated displaced electron lines but Single-Track displaced : $p_T>1.~GeV, p>8~GeV,~IP>0.1~mm, IP\chi^2>16$
- HLT2:
 - Single-e high p_T : $p_T > 10 \text{ GeV}$
 - Double-e prompt: $p_T > 10 \text{ GeV}, m_{ee} > 20 \text{ GeV}$