

Latest tracking results from CEA

A. Chancé, B. Dalena, J. Payet

Thanks to R. De Maria & M. Giovannozzi

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Field Quality Study

- LHC v3.1b @ collision (round beam with $\beta^* = 15$ cm)
- Search for the error set which gives the largest minima of the DA
- Standard errors and corrections for the arcs
- IT errors : slhc/errors/IT_errortable_v2
- Corrections b3, b4, b5, b6, a2, a3, a4, a5, a6 turned on for the IT and D1 (corr_tripD1_v1, M.Giovannozzi, WEPEA048, IPAC'13)
- The error amplitudes can be divided by 2, at most
- DA for 11 angles (0,π/2), 9 amplitudes (11σ, 27σ, step 2σ), 60 particles, 100000 turns, 60 error seeds

Starting point

- Green: all errors ON, with full amplitude \Rightarrow reduction of about 50% of the minima of the acceptance (from 20 σ to 11 σ)
- Blue: all errors ON, with half amplitude (the best achievable) \Rightarrow the minima are increased by about 2σ at all angles, they remain around 14σ

Reduction of the natural quadrupole harmonics

- All the multipoles errors are set to 100%, the correctors are turned ON
- The multipoles are then reduced by 50% one after the other (b14, then b14+a14, then b14+a14+b10, and so one)
- Small gain with the reduction of the natural multipoles

Reduction of the harmonics (2)

- The previous multipoles are kept at 50% and the other are reduced one after the other (b11, then b11+a11, then b11+a11 +b9, and so on..)
- No clear gain with the reduction of **these** multipoles

Reduction of the harmonics (3)

- The previous multipoles are kept at 50% and the other are reduced one after the other, ...+b8, then ...+b8+a8, then+b7+a7
- Visible effect: with the reduction of **these** multipoles the **blue** curve with crosses is reached

Reduction of the harmonics (4)

- The previous multipoles are kept at 50% and the other are reduced one after the other (from b5 up to b3)
- The blue curve with all errors at 50% is reproduced with some statistical fluctuations.

Reduction of the b7, b8, a7, a8 harmonics only

 The reduction of b7, b8, a7, a8 only is not sufficient to reach the blue curve (we gain ~1-1.5σ). Some other multipoles need to be reduced too.

A good sample of multipoles ?

• The reduction of b6, b7, b8, b12 and a6, a7, a8, a12 all together may be a good compromise between the constraints on the magnet design (few multipoles reduced to 50%) and the DA minima.

Summary

- Field Quality Study of LHC v3.1b @ collision optics has been performed with SixTrack in terms of DA.
- Minima DA w/o IT errors ~20 σ , w 100% IT errors (with correctors) ~11 σ , w 50% IT errors (with correctors) ~14 σ
- The scan of the reduction of the harmonics one after the other shows that b7,a7,b8,a8 has the most important effect on the minima DA (~1-1.5σ gain).
- By reducing b6, b7, b8, b12 and a6, a7, a8, a12 all together to 50% we found perhaps a good compromise between the constraints on the magnet design and the DA minima (~1-2σ gain).
- The other multipoles individually do not give a relevant effect on the minima DA.

cern.ch