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Motivation 
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•  HL-LHC project relies on large aperture quadrupoles  the beam is more sensitive 
to non-linear perturbations like those induced by the fringe fields. 
 

• The spatial extension of these fringe fields increases as well (  linearly with coil 
aperture)  
 
 
 

 The total effect on amplitude detuning and chromaticity as been estimated           
(A. V. Bogomyagkov et al, WEPEA049, IPAC’13). 

     Although the effect of the fringe fields is small, the effect on the long-term beam  
     dynamics should be evaluated via tracking simulations: 

  implementation of fringe fields effect in SixTrack. 
 



Main ingredients of the method 
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1. Symplectic integrator  for  a z-dependent Hamiltonian  to study the long-term 
stability  using  SixTrack 
 

2. 3D magnetic field map including fringe fields  in order to  have a detailed 
description as possible  

Several integrators and field map representations can be found in literature. 
In particular we are considering the method developed  by M. Venturini and 
A. J. Dragt 
 

 it seems to be the most comprehensive,                                                       
from  map computation (MARYLIE’s GENMAP routine ) to long-term 
tracking (CTRACK) 

 already applied to LHC high-gradient quadrupoles 

References: 
1. M. Venturini, A.J. Dragt, NIM A 427, p.387,1999 
2. M. Venturini, D. Abell and A. Dragt, “Map computation from magnetic field data and application 

to the LHC high-gradient quadrupoles”  
3. M. Venturini, PhD Thesis (1998) 
4. A. J. Dragt, www.physics.umd.edu/dsat 
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Symplectic integrator of z-dependent 
Hamiltonian 

Reference: 
Y. Wu, E. Forest and D. S. Robin, Phys. Rev. E 68, 046502, 2003 

•  𝑎𝑥 ≡ 𝑎𝑥 𝑥, 𝑦, 𝒛 =
𝑞𝐴𝑥(𝑥,𝑦,𝒛)

𝑃0𝑐
; 𝑎𝑦 = 𝑎𝑦 𝑥, 𝑦, 𝒛 =

𝑞𝐴𝑦(𝑥,𝑦,𝒛)

𝑃0𝑐
; 𝑎𝑧 = 𝑎𝑧 𝑥, 𝑦, 𝒛 =

𝑞𝐴𝑧(𝑥,𝑦,𝒛)

𝑃0𝑐
; 

 

•    is the independent variable with d = dz 
 

•  (z,pz) is the fourth canonical pairs,  needed to have the explicit dependence on z 

The solution of the equation of motion (Transfer Map) for this Hamiltonian is 
obtained by splitting the Hamiltonian into several parts and by using a second order 
symplectic integrator: 

where 𝐾 =  𝐾1 + 𝐾2 + 𝐾3 + 𝐾4   



Application 
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If Ax , Ay and Az are non zero and K split as:    

•  𝐾1 = 𝑝𝑧 − 𝛿 
•  𝐾2 = −𝑎𝑧 

•  𝐾3 =
𝑝𝑥−𝑎𝑥

2

2 1+𝛿
 

•  𝐾4 =
𝑝𝑦−𝑎𝑦

2

2 1+𝛿
 

The second order integrator writes 

using 

The number of iterations needed can be reduced choosing a Gauge 
transformation, so that Ax=0 or Ay=0  
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•  𝐾3 =
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•  𝐾4 =
𝑝𝑦−𝑎𝑦

2

2 1+𝛿
 

The second order integrator writes 

using 
Explicit dependence on z 

The number of iterations needed can be reduced choosing a Gauge 
transformation, so that Ax=0 or Ay=0  
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Transfer map 

−
∆𝜎

2
(𝑝𝑧 − 𝛿) 

∆𝜎

2
𝑎𝑧 − 𝑎𝑥𝑑𝑥 −

∆𝜎

2

(𝒑𝒙)
2

2(1 + 𝛿)
  𝑎𝑥𝑑𝑥 − 𝑎𝑦𝑑𝑦 −∆𝜎

(𝒑𝒚)
2

2(1 + 𝛿)
  𝑎𝑦𝑑𝑦 

x +
𝑝𝑥∆𝜎

2(1 + 𝛿)
 

px +
𝜕𝑎𝑧
𝜕𝑥

∆𝜎

2
 −𝑎𝑥 +𝑎𝑥 − 

𝜕𝑎𝑦

𝜕𝑥
𝑑𝑦 + 

𝜕𝑎𝑦

𝜕𝑥
𝑑𝑦 

y +
𝑝𝑦∆𝜎

(1 + 𝛿)
 

py +
𝜕𝑎𝑧
𝜕𝑦

∆𝜎

2
 − 

𝜕𝑎𝑥
𝜕𝑦
𝑑𝑥 + 

𝜕𝑎𝑥
𝜕𝑦
𝑑𝑥 −𝑎𝑦 +𝑎𝑦 

l −
∆𝜎

2
 −

(𝑝𝑥)
2 ∆𝜎

 4(1 + 𝛿)2
 −

(𝑝𝑦)
2 ∆𝜎

 2(1 + 𝛿)2
 

 

z +
∆𝜎

2
 

pz +
𝜕𝑎𝑧
𝜕𝑧

∆𝜎

2
 − 

𝜕𝑎𝑥
𝜕𝑧
𝑑𝑥 + 

𝜕𝑎𝑥
𝜕𝑧
𝑑𝑥 − 

𝜕𝑎𝑦

𝜕𝑧
𝑑𝑦 + 

𝜕𝑎𝑦

𝜕𝑧
𝑑𝑦 

K1 K2 K3 K4 

The seconds half iterations for K1, K2 and K3 are missing in the table.  



Particular case: ideal quadrupole 

Task.2.3 meeting 07/06/2013 9 

−
∆𝜎

2
(𝑝𝑧 − 𝛿) 

∆𝜎

2

𝑔

2
(𝑥2 − 𝑦2) −

∆𝜎

2

(𝒑𝒙)
2

2(1 + 𝛿)
 −∆𝜎

(𝒑𝒚)
2

2(1 + 𝛿)
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∆𝜎

2

(𝒑𝒙)
2

2(1 + 𝛿)
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2
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2
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∆𝜎
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2
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∆𝜎
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l −
∆𝜎

2
 −

(𝑝𝑥)
2 ∆𝜎
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2
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pz 

K1 K2 K3 K4 

•  𝑎𝑥 = 0 
•  𝑎𝑦 = 0 

•  𝑎𝑧 =
𝑔

2
𝑥2 − 𝑦2  

K3 K2 K1 

Test case only  we found the interleaved 
drift and kick of the thin lens approx. 
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Computation of the vector potential in 
cartesian coordinates 

• The three components of the quadrupole vector potential can 
be written as expansions of normal (s) and skew (c ) multipoles 

• Each of the multipole can be expanded in terms of  
homogenous polynomials in x,y  and z-dependent coefficients  

𝑪𝒎,𝜶
𝒏 (𝒛) (called generalized gradients) 

References: 
A. J. Dragt, www.physics.umd.edu/dsat 

if 

if 



The generalized gradients 
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The z-dependent coefficients can be calculated using the multipoles expansion of the 
magnetic field:  

is the derivative of the modified Bessel function where: 

The error in the computation of these coefficients  gives the accuracy on the transfer 
map. Venturini & Dragt  have a relative error of 10-6 for the coefficients corresponding to 
the low multipoles (C2)  and  of 10-4  for the higher ones (C6).  



The harmonic analysis 
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Yoke 

Pad 

Data provided 
Bx, By, Bz in a Cartesian grid: 
- x = 0:3:75 mm 
- y = 0:3:75 mm 
- z = 300:5:700 (file z700) and z = 700:1100 (file z1100) 

Susana Izquierdo Bermudez 
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Interpolation methods and errors evaluation 

Oleg Gabouev, SEN University, Reims  

• With both interpolators studied the 14th harmonic 
can be computed with a precision  of  about 10-3    
unless we do not consider a  grid step of 1 mm. 

• The Hermite Spline Interpolator  gives better 
results for the low harmonics.  

• The relative error on the 2nd harmonic increases 
from 10-6 to 10-5 when the field amplitude 
decreases  we cannot use very low field values 
with good precision. 

Minimum and maximum 
relative error in the 
computation of the 
harmonics  studied using  
two interpolation 
methods of an analytical 
field with a Gaussian z 
modulation.  



Task.2.3 meeting 07/06/2013 14 

First computation of the gradient C2 

• The kernel 
𝑘𝑚+𝑛−1

𝐼′𝑚(𝑘𝑅𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠)
 acts as a low pass 

filter  insensitivity to noise 
 

• integration not trivial 
 

• need to study a method for it             
(Venturini used a Filon-type integral, 

       a clear reference does not exist)   
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Conclusion & Outlook 

• To study the effect of the fringe fields on the long-term beam dynamics via tracking 
simulations  a model of the fringe fields region in SixTrack is needed. 

• A second order symplectic integrator for z-dependent Hamiltonian has been 
studied   details of the SixTrack dimensions still need to be fixed 

• The calculation of the transfer maps from 3D magnetic field data follows the 
method proposed by Venturini & Dragt: 
 
 study of harmonics analysis accuracy  (almost done) 
      new magnetic field may be map required 
 
 generalized gradients computation and errors evaluation  

 
 tracking simulations   
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HL-LHC prototype 
QXF: Return end (Symmetric) 
z=[0,500] mm: Magnetic yoke and pad 
z=[500,680] mm: Magnetic yoke, non-magnetic pad 
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Example… 

Yoke 

Pad 

Data provided 
Bx, By, Bz in a Cartesian grid: 
- x = 0:3:75 mm 
- y = 0:3:75 mm 
- z = 300:5:700 (file z700) and z = 700:1100 (file z1100) 

Susana Izquierdo Bermudez 


