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Two-gluon cross section
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Generating functional
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Generating functional
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One-gluon spectrum
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Given the branching and elastic rates  K(t)  and C(t) respectively, 
with t being the ordering variable, it is then straightforward to write 
the evolution equation for D
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[Integrating over kt we recover the rate 
equation:   Baier,  Mueller,  Schiff, Son (2001) 
Jeon , Moore (2003), ]

[See J.-P. Blaizot’s talk]
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Diffusion approximationDiffusion approximation
Let us consider a highly energetic particle passing through the medium : 
x ~ 1 . The broadening acquired during a single scattering or a branching is small 
compared to the total broadening.  This allows us to expand the distribution D 
for small transverse momentum exchange
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naturally as a diffusion coefficient, yields
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Renormalization of the quenching parameter 
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Diffusion approximation
Expanding the radiation terms also:
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Double log
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Double logs
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FIG. 2. The phase space of the radiated gluon. t and ω are the lifetime and energy of the gluon,
respectively. The double logarithmic region is enclosed by the lines (a), (b) and (c). Regions A1

and A2 combined together are the region A.

As we shall shortly see the region A, enclosed by the boundary lines (a), (b) and (c), is
a region where Eq. (12) gives a double logarithmic contribution to Eq. (11). This double
logarithmic region is dominated by the single scattering contribution to N(x⊥,ω). The
region B, above line (b), is a region of strong absorption of the quark-antiquark-gluon system
due to the separation of the gluon from the quark-antiquark pair being very large. In the
next section we shall first evaluate Eq. (11) in the region A, a relatively easy task, to
obtain the double logarithmic contribution. Then we shall, in turn, integrate Eq. (12)
across the boundary lines (a), (b) and (c) which, after doing the remaining logarithmic
integration, will give the complete single logarithmic contributions. The constant, non-
logarithmic contributions coming near the intersections of the lines [(a), (b)], [(a), (c)] and
[(b), (c)] are beyond what we are currently able to do.
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which we shall now evaluate using Eq. (11) and Eq. (12). In the double logarithmic region,
region A of Fig. 2, the typical values of B⊥ are much larger than x⊥ so that we evaluate the
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Renormalization of the jet 
quenching parameter

• Go beyond diffusion approximation

• Look at the effect of radiative corrections 
to the emission kernel

K[q̂0] ! K[q̂0 + q̂1]



Renormalization of the jet 
quenching parameterRenormalization of the quenching parameter 
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Double log comes from region where the additional fluctuation has a very 
small formation time and big transverse size 

Fluctuation is effectively seen as instantaneous and therefore looks like a 
correction to the medium interaction



Renormalization of the jet 
quenching parameter

• Strong ordering in formation time of 
Gunion-Bertsch-like gluons

• Leading logs can be resumed into an 
effective 
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Summary

• Radiative corrections lead to potentially 
large contributions through double logs

• These large contributions can be resumed 
into an effective jet quenching parameter

• Probabilistic picture of incoherent 
emissions is still valid


