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Part I: Guiding principles

I. Medium-modified fragmentation

fragmentation function Df→h(z, µ2) encodes the following physics:

→ perturbative parton radiation

hadronization

→ non-perturbative hadronization



Medium-modified parton shower

• virtual parton formation time τ ∼ E/Q2, hadron formation time τh ∼ Eh/m2
h

→ part of the perturbative shower evolution happens in the medium

YaJEM (Yet another Jet Energy-loss Model) — a in-medium shower evolution code

Guiding principles

• realistic radiation phase space, easy contact with experimental analysis
→ Monte Carlo (MC) realization of shower evolution

• known and well-tested p-p baseline
→ based on PYSHOW from the PYTHIA package, uses Lund model hadronization

• minimal prior assumptions about the medium degrees of freedom
→ various a priori available parton-medium interaction scenarios

• to be used together with a hydrodynamical medium description
→ generic interface, used with viscous hydro, EbyE, . . .



QCD shower evolution the PYTHIA way (I)

Evolution in virtuality with (almost) collinear splitting: use t = lnQ2/ΛQCD and z

• differential splitting probability is

dPa =
∑

b,c

αs(t)

2π
Pa→bc(z)dtdz

• splitting kernels from perturbative QCD

Pq→qg(z) =
4

3
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NF

2
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• evolution proceeds in decreasing virtuality t and leads to a series of splittings a → bc
where the daughter partons take the energies Eb = zEa and Ec = (1 − z)Ea.

• Q ∼ PT is the hard scale which makes the process perturbative for Q2 > 1 GeV2



QCD shower evolution the PYTHIA way (II)

• differential branching probability at scale t:

Ia→bc(t) =

∫ z+(t)

z−(t)

dz
αs

2π
Pa→bc(z).

• kinematic limits z± dependent on parent and daughter virtualities and masses
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• probability density for branching of a occuring at tm when coming down from tin:

dPa

dtm
=





∑

b,c

Ia→bc(tm)



 exp



−
∫ tm

tin

dt′
∑

b,c

Ia→bc(t
′)



 .

(probability for branching, times probability that parton has not branched before)



From shower to in-medium shower

Several questions to be answered:

• How to translate momentum space evolution (jet) to spacetime evolution (hydro)?

• How does the medium look when seen from a hard parton?
→ how do partons interact with the medium and are modified by it?

• How to distinguish jet and medium?

• How to deal with quantum interference?
→ generically, MC is a probabilistic picture without quantum effects



Jet evolution in position space

• How to translate momentum space evolution to spacetime evolution?

⇒ model average time for a parton b to branch from parent a as

〈τb〉 =
Eb

Q2
b

− Eb

Q2
a

• actual branching time in given event from probability distribution

P (τb) = exp

[

− τb

〈τb〉

]

• assume all partons are on eikonal trajectory determined by the shower initiator
→ not strictly needed, but convenient if hydro is smooth on short scales

⇒ position of all branchings in spacetime known and connected with medium model

Note: Typically 3-4 generations of branchings happen before the medium forms -
need to be treated as vacuum shower!



Parton-medium interaction

• How does the medium look when seen from a hard parton?

→ how do partons interact with the medium and are modified by it?

YaJEM main option:

• no explicit medium model, medium appears via transport coefficients q̂, ê
→ altered radiation phase space (RAD) and direct energy loss into medium (DRAG)

∆Q2
a =

∫ τ0
a+τa

τ0
a

dζq̂(ζ) ∆Ea =

∫ τ0
a+τa

τ0
a

dζêρ(ζ)

YaJEM alternative option:

• enchance singular part of splitting kernel by (1 + fmed) (FMED), e.g.

Pq→qg(z) =
4

3

1 + z2

1 − z
⇒ 4

3

(

2(1 + fmed)

1 − z
− (1 + z)

)

→ consistency tests with Borghini-Wiedemann MLLA and Q-PYTHIA phenomenology

N. Borghini and U. A. Wiedemann, hep-ph/0506218; K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U. A. Wiedemann, 0804.3568 [hep-ph].



Parton-medium interaction

• a medium is not simply a ’noisy environment’

mediumparton shower

* pQCD

* partons

* non−perturbative

* fluid

partons and energy

scattering kicks partons from
medium

medium absorbs

 

→ a hydro medium can be substantially disturbed by a jet
→ perturbative shower can be broadened beyond kinematics of initial Q2

• energy-momentum conservation holds only for coupled jet-medium simulation!
→ YaJEM RAD and DRAG do not and should not conserve momentum in shower

B. Betz et al, 0812.4401 [nucl-th], YaJEM and hydro: T. R., 1306.2739 [hep-ph]



Jet and background

• How to distinguish jet and medium?

→ not a physics question, up to jet definition, scale separation,. . .

Disclaimer:

Merging YaJEM jets with event generator output will not give the complete answer!

shower + modified medium undistorted medium

−jet = 

For realistic cone radii R < 0.6 and current experimental
procedures, a few years of experience have shown this to be
numerically a non-issue.



Quantum interference

• How to deal with quantum interference?

→ generically, MC is a probabilistic picture without quantum effects

LPM interference:

• lifetime of a virtual state τ ∼ E/(Q2 + ∆Q2)

• virtuality picked from the medium: ∆Q2 ∼ q̂τ = q̂E/(Q2 + ∆Q2)
→ determine self-consistent solution for ∆Q2 inside branching code

(independently coded, but conceptually similar to K. Zapp, J. Stachel and U. A. Wiedemann, Phys. Rev. Lett. 103 (2009) 152302)

Angular ordering:

• kept as in vacuum
→ needs to be, because first branchings setting jet structure happen before medium

• test: angular ordering off in medium leads to statistically identical results
→ reason: virtuality-ordered showers are on average angular ordered

⇒ the effect of any realistic angular decoherence scenario is vanishingly small

T. R., Phys. Rev. C 79 (2009) 054906



Applicability limits

Caveats:

• hadronization assumed to be unmodified by medium
→ no reason to assume low PT and/or heavy hadrons are described correctly
→ in practice, YaJEM does jet-h correlation structures down to few hundred MeV

• relies on expansion around large Q2 scale
→ no mode for on-shell parton propagation, ’thin’ medium assumption
→ no reason heavy quark jets are described correctly

• in practice scaling laws rely on medium density decrease over time
→ limited applicability to test cases like constant media
→ tested not to fail for density fluctuations

• inherits all caveats from PYSHOW (PYTHIA 6)
→ in particular, gluon fragmentation seems to be too soft



Part II: Benchmark tests

II. Brick problems

• take a chunk of matter with fixed temperature (q̂, . . . ) and length L
→ compare with energy loss models

• establish basic model properties without uncertainty from hydro



Energy loss

To determine leading quark energy loss probabilities from YaJEM:

• c-quark as shower initiator: hard vacuum fragmentation and always tagged

• extract energy loss with an ansatz

dN

dE

med

c
(E) =

∫

d(∆E)
dN

dE

vac

c
(E′)P (∆E)δ(E′ − E − ∆E)

→ this assumes P (∆E, E) = P (∆E) (not usually in YaJEM) and allows ∆E > E

⇒ extraction of energy loss not reliable for large ∆E!

• in practice: solve matrix equation for Pj subject to Pj > 0 and
∑

j Pj = 1

Ni(E
i) =

n
∑

j=1

Kij(E
i, ∆Ej)Pj(∆Ej)

T. R., Phys. Rev. C 79 (2009) 054906



Energy loss
• fragmentation functions:
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• energy loss probabilities
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⇒ RAD and FMED show typical flat distribution of radiative energy loss



Energy loss

• parametric dependencies on medium density and L
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• L const. increased medium effect
→ saturation of energy loss in radiative scenarios, much weaker for drag

• q̂ const., L increased
→ if formation time not randomized: initial L2 dependence, then finite energy limit
→ if formation time randomized: L2 dependence almost invisible

⇒ LPM works as expected, but is numerically not dominating pathlength dependence

T. R., Phys. Rev. C 83 (2011) 024908



Fragmentation functions

• fragmentation functions
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• can be made to look similar in the high z region which is probed by spectra

• differences in the low z region
→ enhancement from RAD and FMED, depletion from DRAG



Fragmentation functions

• scaling with parton energy (RAD)
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• for high E, modification goes away
→ medium lifetime is an increasingly smaller fraction of the shower lifetime
→ Q2 ≫ ∆Q2 is increasingly met

⇒ asymptotically, jet quenching in YaJEM goes away

• note scale up upturn point is fix in pT ≈ 3 GeV, not in z!

T. R., Phys. Rev. C 81 (2010) 014906



Part III: Data comparison

III. Comparison with data

• full averaging over hydrodynamical backgrounds
→ check systematics, never be content with a single hydro model

• full bias structure as determined by experimental analysis
→ anti-kT routinely used for jet clustering
→ even clustering a complete hydro+jet event tested



Hydro averaging

• hard vertices for impact parameter b have probability distribution

P (x0, y0) =
TA(r0 + b/2)TA(r0 − b/2)

TAA(b)
,

where TA(r) =
∫

dzρA(r, z).

• if medium-modified fragmentation function along given path is Dmed
i→h(z, µ|r0, y, φ):

〈Dmed
i→h(z, µ)〉TAA

=
1

2π

∫ 2π

0

dφ

∫ ∞

−∞

dx0

∫ ∞

−∞

dy0P (x0, y0)D
med
i→h(z, µ|r0, y, φ).

For RAA, this corresponds to a computationally rather intensive averaging of
paths in a evolving hydrodynamical model with a weight given by P (x0, y0).
For back-to-back hadron correlations, the averaging is even more complicated
due to the trigger bias.

• also EbyE hydro with binary collision vertices from initial condition MC



YaJEM scenarios

• several physics scenarios from the basic building blocks RAD and DRAG
→ FMED is not used for any data comparison

YaJEM: using the RAD scenario
→ linear L-dependence, incompatible with RAA(φ) and RAA(PT ), obsolete

YaJEM-D: as YaJEM, but determining lower in-medium evolution scale Q0 =
√

E/L
→ much better with the data, incompatible with IAA in h-h correlations, obsolete

YaJEM-DE: as YaJEM-D, but using 90% RAD and 10% DRAG
→ reasonable description of all data sets tested so far

YaJEM-E: using the DRAG scenario
→ unrealistic model used to test discriminative power of observables



RAA for central collisions

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ extrapolation to different

√
s (using EbyE for low energy scan)
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• requires careful and controlled extrapolation of background hydrodynamics
→ quenching parametrically scales ∼ T 3 (medium density)
→ non-perturbative physics obscures result below 62.4 GeV

• decent description of RAA over factor 50 in
√

s using YaJEM-DE
→ non-trivial, AdS scenarios fail that test

T. R., 1302.3710 [hep-ph].



RAA for non-central collisions

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ extrapolation to different centrality
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• decent description of the spread in-plane vs. out of plane
→ non-trivial, all models with linear pathlength dependence fail this

• huge (factor 2!) uncertainty related to choice of background hydrodynamcs
→ not obvious if model failure with data tests jet quenching or hydro

T. R., Phys. Rev. C 83 (2011) 024908



RAA for jets

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ LHC extrapolation, clustering with with anti-kT , R = 0.3 following CMS analysis
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• decent decription of jet RAA

→ appears to follow for all scenarios where hadron RAA describes data

T. R., 1302.3710 [hep-ph].



IAA for hadron-hadron correlations

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ back-to-back hadron correlations, away side yield
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• decent description of correlated yield
→ highly non-trivial, probes pathlength dependence and subleading radiation

• dependence on hydro background weaker than for RAA(φ), ∼ 20 %
→ determines elastic energy loss component to about 10%

T. R., Phys. Rev. C 84 (2011) 067902



IAA for γ-hadron correlations

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ γ-hadron correlations, away side yield

• decent description of correlated yield except perhaps in low PT region
→ related to a quark RAA at high zT , i.e. constrained

• possible tension in STAR h-h and PHENIX γ-h data a low PT



AJ for jets

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ LHC extrapolation, clustering with with anti-kT , R = 0.3 following CMS analysis
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• decent decription of momentum depensnce of jet AJ

→ however, even YaJEM-E is sort of close to the data?!
→ probes mainly kinematical collimation and quark/gluon differences

T. R., Phys. Rev. C 86 (2012) 061901



IAA for jet-hadron correlations

• parameters fixed to RAA in 0-10% central 200 AGeV collisions
→ anti-kT clustering with STAR PID and track pT cuts, following STAR analysis
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• good description of balance function DAA = yieldAA(PT )〈PT 〉 − yieldpp(PT )〈PT 〉
→ non-trivial, note that upturn happens at fixed PT ≈ 3 GeV

• good description of transverse jet structure
→ non-trivial and not constrained much by anything else

T. R., Phys. Rev. C 87 (2013) 2, 024905.



All the rest

Also other observables with YaJEM-DE:

• h-jet correlations (ALICE)
→ full calculation (prediction made after LHC data), good description of the data

• h-h correlations at LHC (ALICE)
→ full calculation (prediction made before LHC data), in rough agreement with data

• jet shapes (CMS)
→ exploratory study, no tension with the data seen

• jet fragmentation function (CMS)
→ full calculation for similar kinematics, good description of the data

• dihadron 2+1 triggered correlations (STAR)
→ exploratory study, order of magnitude okay, conceptual problem with data trend

Decent agreement with a large body of very different observables
in very different kinematical and differently biased regimes.



What does this mean?

Lessons learned:

• vacuum pQCD and medium-induced radiation phase space works really well
→ important to get phase space right before looking at details

• the data are not in agreement with
→ any fractional energy loss (this would not leave the upturn fixed at 3 GeV)
→ a large elastic/incoherent component (this would overshoot away side IAA)
→ an AdS/CFT like T 4 scaling of the medium quenching power

• the choice of the hydro background matters!
→ dependent on observable, just a few % or factors of 2
→ proposal: let’s try to constrain hydro by high PT !

• the data show no evidence for specific medium QCD physics like
→ color decoherence (no predicted signal except unspecific broadening)
→ color reconnections (no changes in observed hadrochemistry)

• jet observables often have less constraining power than hadron correlations
→ but jet triggered correlations can do miracles!



Part IV: Outlook

IV. What else can YaJEM do ?

• hard photon production
• energy deposition into the medium
• jet mass dependent observables



Photon production

• at the simple expense of allowing q → qγ, we can get bremsstrahlung photons

• using a formula for conversion photons

Eγ

dNγ

d3pγd4x
=

ααs

4π2

Nf
∑

f=1

(eqf

e

)2

× [fq(pγ) + fq(pγ)] T 2

[

ln
4EγT

m2
− 1.916

]

.

with fq(q)(p) = (2π)3δ(x − x0)δ(y − y0)δ(z − ct)δ3(p) in evolving shower
⇒ approximate yield of conversion photons

Caveat: The above expression is derived assuming an ideal quark-gluon gas — this
is different from the medium description usually used in YaJEM



Photon production

• some exploratory study (very statistics-hungry. . . )
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• modest low PT enhancement of fragmentation photon yield

• conversion photons do not have a sharp peak as in energy loss approximation

• gluon jets do have photon emission, as gluons can branch into qq

T. R., 1304.7598 [hep-ph].



Energy deposition

• plot the energy deposition into medium via ê term
→ event-by-event fluctuating source term for hydrodynamics
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Jet mass binning

• idea: high mass jets have stronger evolution and more multiplicity
→ multiple propagating color charges, stronger modification
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⇒ should be possible to see even after clustering with R = 0.4

T. R., Phys. Rev. C 87 (2013) 037901



YaJEM

Some open issues:

• study systematics of high pT v2 in different hydro models

• phenomenology of shower and conversion photons

• application to heavy quarks at really high PT?

If you’re curious, YaJEM is available for the public on request (just drop
me a mail). Sorry - no user interface, no manual, no complete event
generator but only shower — the YaJEM collaboration doesn’t have as
many resources as the JET collaboration (= I do not have a student for
code maintenance and interface coding).


