

a MC generator for in-medium shower evolution

Thorsten Renk

Guiding Principles

- idea, basic equations, limits of applicability BENCHMARK RESULTS

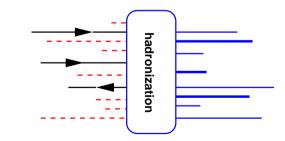
- TECHQM brick problem results

- implementation of LPM interference

DATA COMPARISON

- leading hadron R_{AA} and I_{AA} results, jet observables OUTLOOK

- bremsstrahlung, conversion photons, energy deposition


PART I: GUIDING PRINCIPLES

I. Medium-modified fragmentation

fragmentation function $D_{f \rightarrow h}(z, \mu^2)$ encodes the following physics:

 \rightarrow perturbative parton radiation

 \rightarrow non-perturbative hadronization

MEDIUM-MODIFIED PARTON SHOWER

• virtual parton formation time $\tau \sim E/Q^2$, hadron formation time $\tau_h \sim E_h/m_h^2$ \rightarrow part of the perturbative shower evolution happens in the medium

YaJEM (Yet another Jet Energy-loss Model) — a in-medium shower evolution code

Guiding principles

- realistic radiation phase space, easy contact with experimental analysis
- \rightarrow Monte Carlo (MC) realization of shower evolution
- known and well-tested p-p baseline
- \rightarrow based on PYSHOW from the PYTHIA package, uses Lund model hadronization
- minimal prior assumptions about the medium degrees of freedom
- \rightarrow various *a priori* available parton-medium interaction scenarios
- to be used together with a hydrodynamical medium description \rightarrow generic interface, used with viscous hydro, EbyE, . . .

QCD SHOWER EVOLUTION THE PYTHIA WAY (I)

Evolution in virtuality with (almost) collinear splitting: use $t = \ln Q^2 / \Lambda_{QCD}$ and z

• differential splitting probability is

$$dP_a = \sum_{b,c} \frac{\alpha_s(t)}{2\pi} P_{a \to bc}(z) dt dz$$

• splitting kernels from perturbative QCD

$$P_{q \to qg}(z) = \frac{4}{3} \frac{1+z^2}{1-z} \quad P_{g \to gg}(z) = 3 \frac{(1-z(1-z))^2}{z(1-z)} \quad P_{g \to q\overline{q}}(z) = \frac{N_F}{2} (z^2 + (1-z)^2)$$

• evolution proceeds in decreasing virtuality t and leads to a series of splittings $a \rightarrow bc$ where the daughter partons take the energies $E_b = zE_a$ and $E_c = (1-z)E_a$.

• $Q \sim P_T$ is the hard scale which makes the process perturbative for $Q^2 > 1 \text{ GeV}^2$

QCD SHOWER EVOLUTION THE PYTHIA WAY (II)

• differential branching probability at scale *t*:

$$I_{a \to bc}(t) = \int_{z_{-}(t)}^{z_{+}(t)} dz \frac{\alpha_s}{2\pi} P_{a \to bc}(z).$$

• kinematic limits z_\pm dependent on parent and daughter virtualities and masses $M_{abc}=\sqrt{m^2_{abc}+Q^2_{abc}}$

$$z_{\pm} = \frac{1}{2} \left(1 + \frac{M_b^2 - M_c^2}{M_a^2} \pm \frac{|\mathbf{p}_a|}{E_a} \sqrt{(M_a^2 - M_b^2 - M_c^2)^2 - 4M_b^2 M_c^2}}{M_a^2} \right)$$

• probability density for branching of a occuring at t_m when coming down from t_{in} :

$$\frac{dP_a}{dt_m} = \left[\sum_{b,c} I_{a\to bc}(t_m)\right] \exp\left[-\int_{t_{in}}^{t_m} dt' \sum_{b,c} I_{a\to bc}(t')\right].$$

(probability for branching, times probability that parton has not branched before)

FROM SHOWER TO IN-MEDIUM SHOWER

Several questions to be answered:

- How to translate momentum space evolution (jet) to spacetime evolution (hydro)?
- How does the medium look when seen from a hard parton?
- \rightarrow how do partons interact with the medium and are modified by it?
- How to distinguish jet and medium?
- How to deal with quantum interference?
- \rightarrow generically, MC is a probabilistic picture without quantum effects

JET EVOLUTION IN POSITION SPACE

• How to translate momentum space evolution to spacetime evolution?

 \Rightarrow model average time for a parton b to branch from parent a as

$$\langle \tau_b \rangle = \frac{E_b}{Q_b^2} - \frac{E_b}{Q_a^2}$$

• actual branching time in given event from probability distribution

$$P(\tau_b) = \exp\left[-\frac{\tau_b}{\langle \tau_b \rangle}\right]$$

 \bullet assume all partons are on eikonal trajectory determined by the shower initiator \rightarrow not strictly needed, but convenient if hydro is smooth on short scales

 \Rightarrow position of all branchings in spacetime known and connected with medium model

Note: Typically 3-4 generations of branchings happen *before* the medium forms - need to be treated as vacuum shower!

PARTON-MEDIUM INTERACTION

How does the medium look when seen from a hard parton?
→ how do partons interact with the medium and are modified by it?

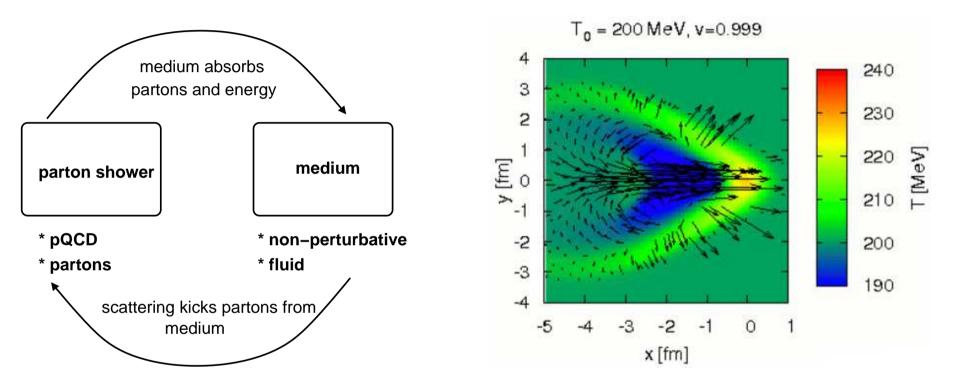
YaJEM main option:

• no explicit medium model, medium appears via transport coefficients \hat{q}, \hat{e} \rightarrow altered radiation phase space (RAD) and direct energy loss into medium (DRAG)

$$\Delta Q_a^2 = \int_{\tau_a^0}^{\tau_a^0 + \tau_a} d\zeta \hat{q}(\zeta) \quad \Delta E_a = \int_{\tau_a^0}^{\tau_a^0 + \tau_a} d\zeta \hat{e} \rho(\zeta)$$

YaJEM alternative option:

• enchance singular part of splitting kernel by $(1 + f_{med})$ (FMED), e.g.


$$P_{q \to qg}(z) = \frac{4}{3} \frac{1+z^2}{1-z} \Rightarrow \frac{4}{3} \left(\frac{2(1+f_{med})}{1-z} - (1+z) \right)$$

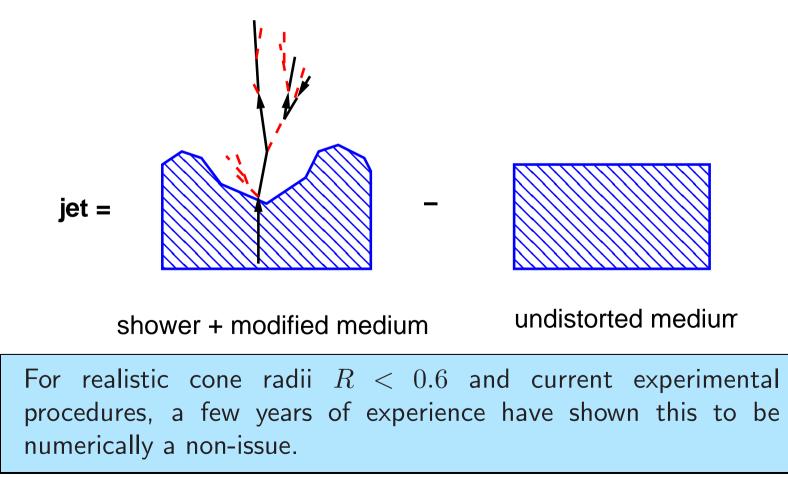
 \rightarrow consistency tests with Borghini-Wiedemann MLLA and Q-PYTHIA phenomenology

N. Borghini and U. A. Wiedemann, hep-ph/0506218; K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U. A. Wiedemann, 0804.3568 [hep-ph].

PARTON-MEDIUM INTERACTION

• a medium is not simply a 'noisy environment'

- \rightarrow a hydro medium can be substantially disturbed by a jet
- \rightarrow perturbative shower can be broadened beyond kinematics of initial Q^2
- \bullet energy-momentum conservation holds only for coupled jet-medium simulation! \rightarrow YaJEM RAD and DRAG do not and should not conserve momentum in shower


JET AND BACKGROUND

• How to distinguish jet and medium?

 \rightarrow not a physics question, up to jet definition, scale separation, . . .

Disclaimer:

Merging YaJEM jets with event generator output will not give the complete answer!

QUANTUM INTERFERENCE

- How to deal with quantum interference?
- \rightarrow generically, MC is a probabilistic picture without quantum effects

LPM interference:

- lifetime of a virtual state $\tau \sim E/(Q^2 + \Delta Q^2)$
- virtuality picked from the medium: $\Delta Q^2 \sim \hat{q}\tau = \hat{q}E/(Q^2 + \Delta Q^2)$ \rightarrow determine self-consistent solution for ΔQ^2 inside branching code

(independently coded, but conceptually similar to K. Zapp, J. Stachel and U. A. Wiedemann, Phys. Rev. Lett. 103 (2009) 152302)

Angular ordering:

- kept as in vacuum
- \rightarrow needs to be, because first branchings setting jet structure happen before medium
- test: angular ordering off in medium leads to statistically identical results \rightarrow reason: virtuality-ordered showers are on average angular ordered
- \Rightarrow the effect of any realistic angular decoherence scenario is vanishingly small

T. R., Phys. Rev. C 79 (2009) 054906

Caveats:

- hadronization assumed to be unmodified by medium
- \rightarrow no reason to assume low P_T and/or heavy hadrons are described correctly
- \rightarrow in practice, YaJEM does jet-h correlation structures down to few hundred MeV
- \bullet relies on expansion around large Q^2 scale
- \rightarrow no mode for on-shell parton propagation, 'thin' medium assumption
- \rightarrow no reason heavy quark jets are described correctly
- in practice scaling laws rely on medium density decrease over time
- \rightarrow limited applicability to test cases like constant media
- \rightarrow tested not to fail for density fluctuations
- inherits all caveats from PYSHOW (PYTHIA 6)
- \rightarrow in particular, gluon fragmentation seems to be too soft

PART II: BENCHMARK TESTS

II. Brick problems

- take a chunk of matter with fixed temperature (\hat{q} , . . .) and length $L \rightarrow$ compare with energy loss models
- establish basic model properties without uncertainty from hydro

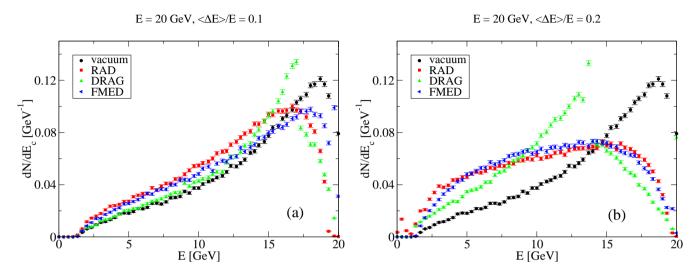
Energy loss

To determine leading quark energy loss probabilities from YaJEM:

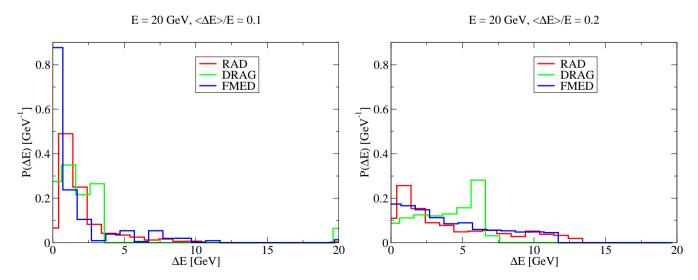
- *c*-quark as shower initiator: hard vacuum fragmentation and always tagged
- extract energy loss with an ansatz

$$\frac{dN^{med}}{dE_c}(E) = \int d(\Delta E) \frac{dN^{vac}}{dE_c}(E') P(\Delta E) \delta(E' - E - \Delta E)$$

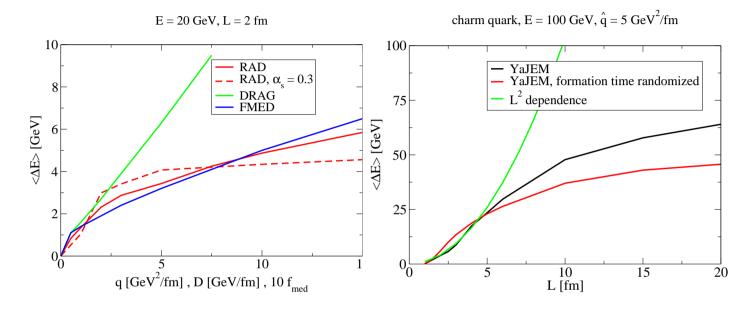
 \rightarrow this assumes $P(\Delta E, E) = P(\Delta E)$ (not usually in YaJEM) and allows $\Delta E > E$ \Rightarrow extraction of energy loss not reliable for large ΔE !


• in practice: solve matrix equation for P_j subject to $P_j > 0$ and $\sum_j P_j = 1$

$$N_i(E^i) = \sum_{j=1}^n K_{ij}(E^i, \Delta E^j) P_j(\Delta E^j)$$

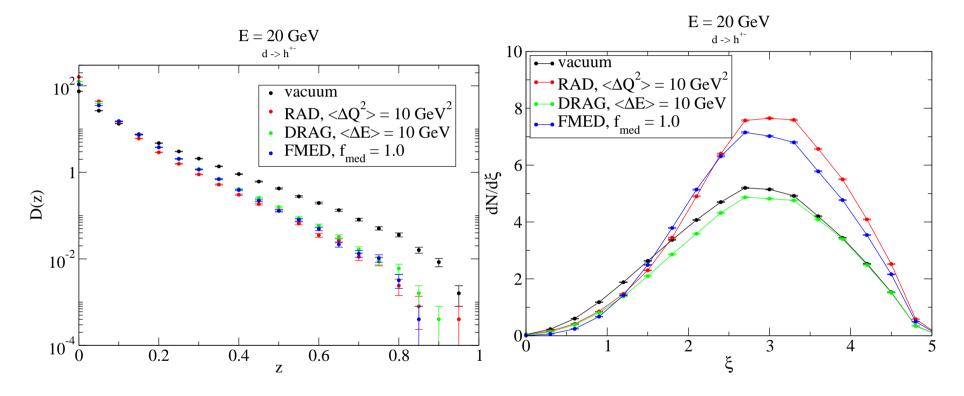

T. R., Phys. Rev. C 79 (2009) 054906

• fragmentation functions:


• energy loss probabilities

 \Rightarrow RAD and FMED show typical flat distribution of radiative energy loss

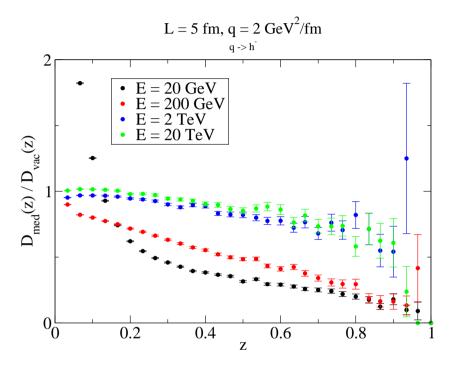
 \bullet parametric dependencies on medium density and L



- *L* const. increased medium effect
- \rightarrow saturation of energy loss in radiative scenarios, much weaker for drag
- \hat{q} const., L increased
- \rightarrow if formation time not randomized: initial L^2 dependence, then finite energy limit
- \rightarrow if formation time randomized: L^2 dependence almost invisible
- \Rightarrow LPM works as expected, but is numerically not dominating pathlength dependence

T. R., Phys. Rev. C 83 (2011) 024908

FRAGMENTATION FUNCTIONS


• fragmentation functions

- \bullet can be made to look similar in the high z region which is probed by spectra
- differences in the low z region
- \rightarrow enhancement from RAD and FMED, depletion from DRAG

FRAGMENTATION FUNCTIONS

• scaling with parton energy (RAD)

- \bullet for high E, modification goes away
- \to medium lifetime is an increasingly smaller fraction of the shower lifetime $\to Q^2 \gg \Delta Q^2$ is increasingly met
- \Rightarrow asymptotically, jet quenching in YaJEM goes away
- note scale up **upturn** point is fix in $p_T \approx 3$ GeV, **not** in z!

T. R., Phys. Rev. C 81 (2010) 014906

PART III: DATA COMPARISON

III. Comparison with data

- full averaging over hydrodynamical backgrounds
- \rightarrow check systematics, never be content with a single hydro model
- full bias structure as determined by experimental analysis
- \rightarrow anti- k_T routinely used for jet clustering
- \rightarrow even clustering a complete hydro+jet event tested

HYDRO AVERAGING

• hard vertices for impact parameter **b** have probability distribution

$$P(x_0, y_0) = \frac{T_A(\mathbf{r_0} + \mathbf{b}/2)T_A(\mathbf{r_0} - \mathbf{b}/2)}{T_{AA}(\mathbf{b})},$$

where $T_A(\mathbf{r}) = \int dz \rho_A(\mathbf{r}, z)$.

• if medium-modified fragmentation function along given path is $D_{i \rightarrow h}^{med}(z, \mu | \mathbf{r_0}, y, \phi)$:

$$\langle D_{i \to h}^{med}(z,\mu) \rangle_{T_{AA}} = \frac{1}{2\pi} \int_0^{2\pi} d\phi \int_{-\infty}^{\infty} dx_0 \int_{-\infty}^{\infty} dy_0 P(x_0,y_0) D_{i \to h}^{med}(z,\mu|\mathbf{r_0},y,\phi).$$

For R_{AA} , this corresponds to a computationally rather intensive averaging of paths in a evolving hydrodynamical model with a weight given by $P(x_0, y_0)$. For back-to-back hadron correlations, the averaging is even more complicated due to the trigger bias.

• also EbyE hydro with binary collision vertices from initial condition MC

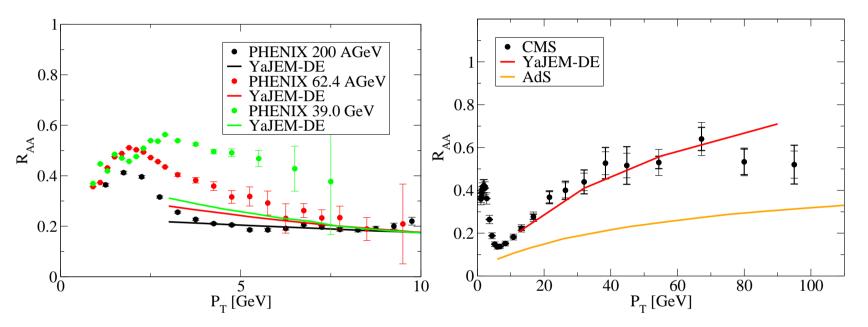
YAJEM SCENARIOS

 \bullet several physics scenarios from the basic building blocks RAD and DRAG \rightarrow FMED is not used for any data comparison

YaJEM: using the RAD scenario

 \rightarrow linear *L*-dependence, incompatible with $R_{AA}(\phi)$ and $R_{AA}(P_T)$, obsolete

YaJEM-D: as YaJEM, but determining lower in-medium evolution scale $Q_0 = \sqrt{E/L}$ \rightarrow much better with the data, incompatible with I_{AA} in h-h correlations, obsolete

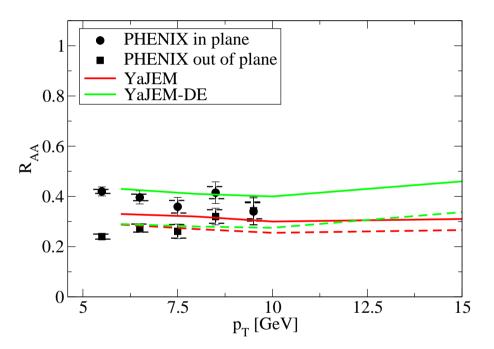

YaJEM-DE: as YaJEM-D, but using 90% RAD and 10% DRAG \rightarrow reasonable description of all data sets tested so far

YaJEM-E: using the DRAG scenario

 \rightarrow unrealistic model used to test discriminative power of observables

R_{AA} for central collisions

• parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions \rightarrow extrapolation to different \sqrt{s} (using EbyE for low energy scan)

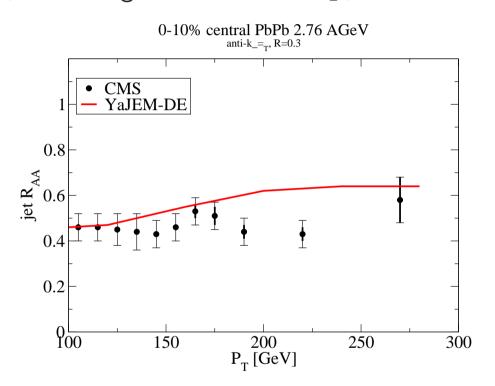


- requires careful and controlled extrapolation of background hydrodynamics \rightarrow quenching parametrically scales $\sim T^3$ (medium density)
- \rightarrow non-perturbative physics obscures result below 62.4 GeV
- decent description of R_{AA} over factor 50 in \sqrt{s} using YaJEM-DE \rightarrow non-trivial, AdS scenarios fail that test

T. R., 1302.3710 [hep-ph].

R_{AA} for non-central collisions

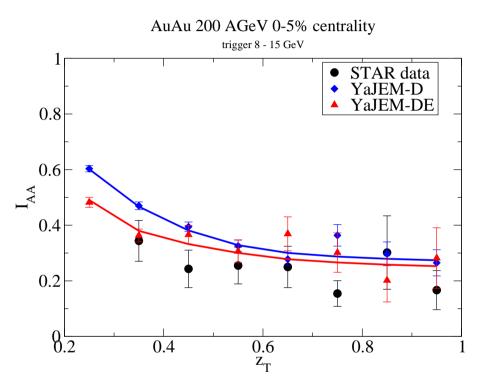
• parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions \rightarrow extrapolation to different centrality



20 - 30 %

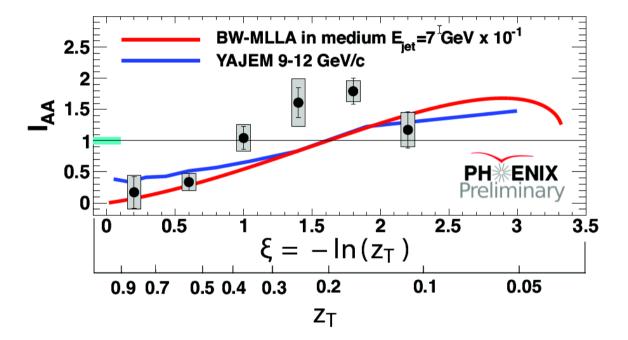
- \bullet decent description of the spread in-plane vs. out of plane \rightarrow non-trivial, all models with linear pathlength dependence fail this
- huge (factor 2!) uncertainty related to choice of background hydrodynamcs \rightarrow not obvious if model failure with data tests jet quenching or hydro

R_{AA} for jets


• parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions \rightarrow LHC extrapolation, clustering with with anti- k_T , R = 0.3 following CMS analysis

- decent decription of jet R_{AA}
- \rightarrow appears to follow for all scenarios where hadron R_{AA} describes data
- T. R., 1302.3710 [hep-ph].

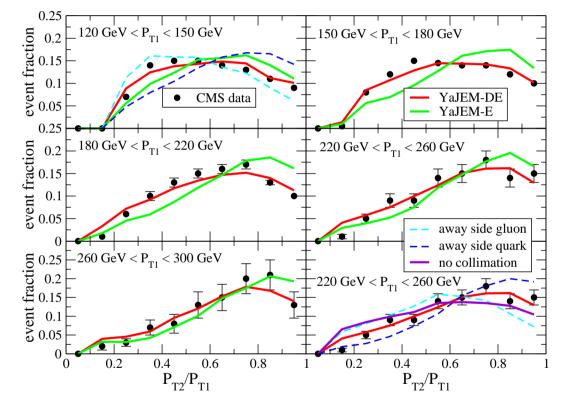
I_{AA} for hadron-hadron correlations


• parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions \rightarrow back-to-back hadron correlations, away side yield

- decent description of correlated yield
- \rightarrow highly non-trivial, probes pathlength dependence and subleading radiation
- \bullet dependence on hydro background weaker than for $R_{AA}(\phi)$, $\sim 20~\%$
- \rightarrow determines elastic energy loss component to about 10%

I_{AA} for γ -hadron correlations

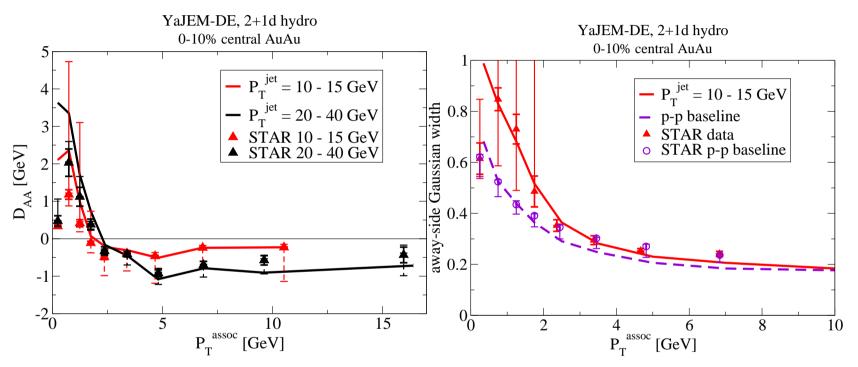
• parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions $\rightarrow \gamma$ -hadron correlations, away side yield



- decent description of correlated yield except perhaps in low P_T region \rightarrow related to a quark R_{AA} at high z_T , i.e. constrained
- \bullet possible tension in STAR h-h and PHENIX $\gamma\text{-h}$ data a low P_T

A_J For jets

- parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions
- \rightarrow LHC extrapolation, clustering with with anti- k_T , R=0.3 following CMS analysis


0-20% 2.76 ATeV PbPb

- decent decription of momentum depensice of jet A_J
- \rightarrow however, even YaJEM-E is sort of close to the data?!
- \rightarrow probes mainly kinematical collimation and quark/gluon differences

I_{AA} for jet-hadron correlations

• parameters fixed to R_{AA} in 0-10% central 200 AGeV collisions \rightarrow anti- k_T clustering with STAR PID and track p_T cuts, following STAR analysis

• good description of balance function $D_{AA} = \text{yield}_{AA}(P_T)\langle P_T \rangle - \text{yield}_{pp}(P_T)\langle P_T \rangle$ \rightarrow non-trivial, note that upturn happens at fixed $P_T \approx 3 \text{ GeV}$

- good description of transverse jet structure
- \rightarrow non-trivial and not constrained much by anything else

ALL THE REST

Also other observables with YaJEM-DE:

- h-jet correlations (ALICE)
- \rightarrow full calculation (prediction made after LHC data), good description of the data
- h-h correlations at LHC (ALICE)
- \rightarrow full calculation (prediction made before LHC data), in rough agreement with data
- jet shapes (CMS)
- \rightarrow exploratory study, no tension with the data seen
- jet fragmentation function (CMS)
- \rightarrow full calculation for similar kinematics, good description of the data
- dihadron 2+1 triggered correlations (STAR)
- \rightarrow exploratory study, order of magnitude okay, conceptual problem with data trend

Decent agreement with a large body of very different observables in very different kinematical and differently biased regimes.

WHAT DOES THIS MEAN?

Lessons learned:

• vacuum pQCD and medium-induced radiation phase space works really well \rightarrow important to get phase space right before looking at details

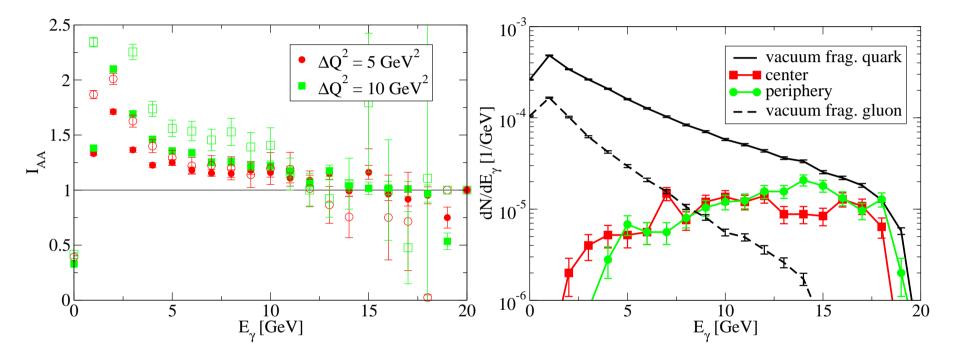
- the data are not in agreement with
- \rightarrow any fractional energy loss (this would not leave the upturn fixed at 3 GeV)
- \rightarrow a large elastic/incoherent component (this would overshoot away side I_{AA})
- \rightarrow an AdS/CFT like T^4 scaling of the medium quenching power
- the choice of the hydro background matters!
- \rightarrow dependent on observable, just a few % or factors of 2
- \rightarrow proposal: let's try to constrain hydro by high P_T !
- the data show no evidence for specific medium QCD physics like
- \rightarrow color decoherence (no predicted signal except unspecific broadening)
- \rightarrow color reconnections (no changes in observed hadrochemistry)
- jet observables often have less constraining power than hadron correlations \rightarrow but jet triggered correlations can do miracles!

IV. What else can YaJEM do ?

- hard photon production
- energy deposition into the medium
- jet mass dependent observables

PHOTON PRODUCTION

- \bullet at the simple expense of allowing $q \to q \gamma$, we can get bremsstrahlung photons
- using a formula for conversion photons

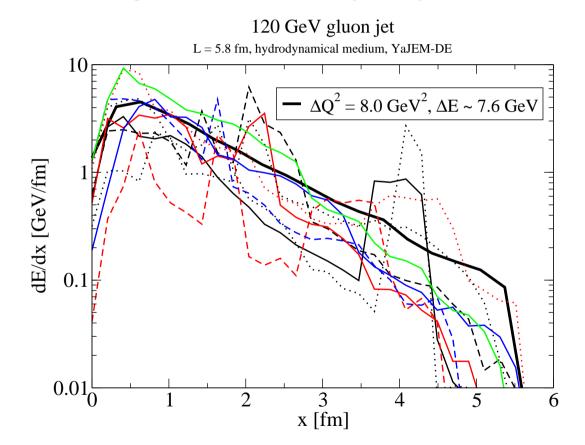

$$E_{\gamma} \frac{dN_{\gamma}}{d^3 p_{\gamma} d^4 x} = \frac{\alpha \alpha_s}{4\pi^2} \sum_{f=1}^{N_f} \left(\frac{e_{q_f}}{e}\right)^2 \times \left[f_q(p_{\gamma}) + f_{\overline{q}}(p_{\gamma})\right] T^2 \left[\ln\frac{4E_{\gamma}T}{m^2} - 1.916\right].$$

with $f_{q(\overline{q})}(p) = (2\pi)^3 \delta(x - x_0) \delta(y - y_0) \delta(z - ct) \delta^3(p)$ in evolving shower \Rightarrow approximate yield of conversion photons

Caveat: The above expression is derived assuming an ideal quark-gluon gas — this is different from the medium description usually used in YaJEM

PHOTON PRODUCTION

• some exploratory study (very statistics-hungry. . .)

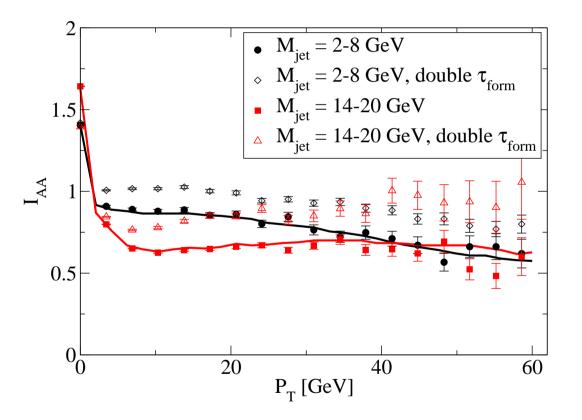


- modest low P_T enhancement of fragmentation photon yield
- conversion photons do not have a sharp peak as in energy loss approximation
- \bullet gluon jets do have photon emission, as gluons can branch into $q\overline{q}$

T. R., 1304.7598 [hep-ph].

ENERGY DEPOSITION

• plot the energy deposition into medium via \hat{e} term \rightarrow event-by-event fluctuating source term for hydrodynamics



T. R., 1306.2739 [hep-ph].

JET MASS BINNING

• idea: high mass jets have stronger evolution and more multiplicity
→ multiple propagating color charges, stronger modification

 $E_q = 100 \text{ GeV}, \text{ anti-k}_T \text{ R}=0.4$

 \Rightarrow should be possible to see even after clustering with R = 0.4

T. R., Phys. Rev. C 87 (2013) 037901

Some open issues:

- study systematics of high $p_T v_2$ in different hydro models
- phenomenology of shower and conversion photons
- application to heavy quarks at really high P_T ?

If you're curious, YaJEM is available for the public on request (just drop me a mail). Sorry - no user interface, no manual, no complete event generator but only shower — the YaJEM collaboration doesn't have as many resources as the JET collaboration (= I do not have a student for code maintenance and interface coding).