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Preliminaries

» Presenting results from ALICE, CMS and ATLAS (AA)
- Best attempt to collect up-to-date public results

» Cover subset of jet quenching observables measured with
reconstructed jets

- Heavy flavor jets and EW observables not covered
here

- See dedicated talks on these subjects

» Experimentally, Hl jet observables entering era of precision
measurements

- We’ve got our hands full with baseline measurements
and reducing systematics

= [mportant to stop and consider implications of what
we already know and incorporate it into future plans
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Jets in Heavy lon Collisions : Experimental Issues

p Jets have been used extensively in high energy community
as analysis objects and many issues have been worked
through:

= Theoretical foundations, IRC safety
= Calibration techniques/detector response/noise
= Corrections for experimental effects
p Where possible, try not to reinvent the wheel
p Learn from Snhowmass!

= Following in HEP footsteps also natural for LHC
experiments

p HEP community trying to deal with high pileup of future
LHC conditions

- Natural time for synergy for experimental techniques
between two communities

- However techniques developed for pileup environment
may not be the best for Hl
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Jets in Heavy lon Collisions : Experimental Issues

» Main HI problem: how to (experimentally) separate jet signal
from UE

= We (currently) know too little about jet vs medium

response to apply a completely satisfactory solution to
this problem a priori

= In early measurements, apply careful experimental
operating definition (e.g. ATLAS):

e Energy clustered in a jet reconstruction algorithm
above the uncorrelated UE

e May include medium response (correlated)

» All experiments attempt to subtract an unbiased estimate of
the uncorrelated UE using area-based method

= Details outside the scope of this talk

» Must apply correct procedure (e.g. unfolding) to account for
residual experimental effects
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What We Know from RHIC

» Indirect observation of quenching established by two key

measurements

- Suppression in rate of inclusive hadron
production at high pt — nuclear
modification factor Raa

- Modification of di-hadron azimuthal

correlations
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= QCD factorization is explicitly broken in

nucleus—nucleus collisions

_

» “Phase 0” of an LHC jet quenching program is to extend
these exact measurements to the LHC

» “Phase I” is to perform analogous measurements with fully
reconstructed jets with high precision
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Phase I: Extending the Familiar to the LHC
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» Add LHC measurements to the picture
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» Gradual rise in Raa manifest feature of suppression
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(1IN ) dN/dA

Ushering in the LHC Era: Dijet Asymmetry
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A A_' A ET2 > 25 GeV
First direct
observation of

jet quenching

Significant fraction of events with enhanced dijet
asymmetry while simultaneously preserving the
back-to-back angular correlation
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Inclusive energy
loss

Hard scattering rates,

jet suppression

Jet properties
Fragmentation
function, jet shape

Correlations and
differential energy loss

asymmetry and A¢ distributions:
dijet, y-jet and Z-jet
jet-hadron correlations




Inclusive energy
loss

Hard scattering rates,
jet suppression




Inclusive Jet Suppression

> What about centrality-dependent modification of jet
spectra?

- Jet kinematics more sensitive to parton suffering
energy loss

- Access dynamics of full parton shower
> Medium effects may cause jet energy to be
transported outside the nominal jet cone

> Can lost energy be recovered by expanding
size of jet definition (radius) ?

= Measure single jet suppression with multiple jet sizes
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Results: Rcp vs pr in Centrality Bins
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Results: Rcp vs Npart in pT bins
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> Centrality dependence as represented by Npar
> Suppression turns on differently for high and low pr jets
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Results: Rcp VS R
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Raa

Pb-Pb {5 = 2.76 TeV
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> As of ~ 1 year ago (QM2012), all
experiments seeing comparable
degree of suppression and similar
trends with pr, centrality and R
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Quantitative statement of R dependence
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Ratios of Rcp to
Rcp with R=0.2

Measure relative
suppression with
respect to most
suppressed R

value (R=0.2)

Variation with R
is significant

> Many systematics cancel, correlated between different R
» Statistical correlation between different R values included and
propagated through unfolding
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Jet Suppression and Collision Geometry

» Jets produced with different angles with respect to
event plane (A®) will see different path lengths and
density profiles in the medium

Ad = dI°t — b,

S L L L L I T I

= Measure single jet suppression
as a function of A : vaiet
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Jet Suppression and Collision Geometry
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> Significant non-zero modulation of hadron yields at high pr

> Weak pr dependence: jets dominating production of
hadrons pt20-50 GeV have similar vz values

> Leads to similar expectation for jets
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Jet Suppression and Collision Geometry
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> 1-5% modulation of yield

> Centrality dependence consistent with naive expectation
from geometric considerations

\iﬂ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

18



Jet Suppression and Collision Geometry
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» Compare ratio of
yields at A$p=0 and /2
to expectation from
pure second harmonic
modulation

> Almost no room for
different modulation
modulation ( e.g. cos?
2A¢) which may be
expected from non-
linear path length
dependence

> Need calculation with
full realistic geometry
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Correlations and

differential energy loss

asymmetry and A¢ distributions:
dijet, y-jet and Z-jet

jet-hadron correlations




Asymmetry: Differential Energy Loss

» y/Z— jet correlations provide clean probe since y and Z
( or leptonic decay products) do not suffer energy loss

= Do NOT expect jets recoiling against y/Z to have
same pr as y/Z

- Effects like initial state parton shower cause
broadening of distribution

- Focus on xy = priet/ ptV/?

> Unmodified xy and A, distributions in are different y—
and Z— jet events

- Large virtuality required to produce Z

- Potentially provide different handles on energy loss
since intrinsic are different
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y-jet: x4y Distributions
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» Slight differences in kinematic selection and analysis
details but same general trend— large systematic shift
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Z—jet Correlations

0—20% centrality
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20—80% centrality

ATLAS Preliminary
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> Mostly proof of principle due to low statistics but hints
at potential of the measurement when more data comes

> General trend compatible with photon-jet results
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PbPb/pp

Jet Structure: Fragmentation Function
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» Use tracks inside of jets

> Subtract UE contribution to correlation

> Z is longitudinal momentum fraction
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Jet Structure: Centrality Dependence
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» Enhancement at low z/large & R

» Suppression at moderate z/§
» Hard component behavior may exhibit additional
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Jet Structure: Centrality Dependence
Rath D 0—10% /D 60 —80 %
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> Similar trends in D(z) and D(p1) distributions
> D(p1) does not have quenching effect in denominator
> Slightly cleaner interpretation
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Jet Transverse Structure
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> Evidence for shape modification, more energy at larger radii
» Qualitatively consistent with Rcp trends but what is
quantitative expectation?
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1N, 1/ dN/dj_[(GeV/c)?]

Jet Transverse Structure
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» Similar conclusion to jet shape
> Room for gradual broadening

» Consistent with
small but
significant
centrality-
dependent change
In structure

>» Measurement
needs to be
repeated using
2011 data

> Needs precision measurement and quantitative

prediction
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Jet Transverse Structure
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- 1> Not pure measure of

transverse structure, but
contains important
informaiton

| > Asymmetry analysis has

shown that asymmetric

dijet pairs recover

momentum balance by

iIncluding energy at large

angles (AR > 0.8)

= Compared to
unquenched this
momentum balance is
represented in softer
particles
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What are we
left with after
putting these
e together?

loss

Hard scattering
rates, jet
suppression

Correlations and
differential energy loss

asymmetry and A¢ distributions:
dijet, y-jet and Z-jet
jet-hadron correlations



The “Average Jet”

—~

» Tempting to interpret moderate

contributing to excess atlowz

= Would conclude all jets are 1.3}
quenched in the same way 1.2
» Not every jet has distribution of 11
fragments like this 1
= |n fact none do! zz

a
oC 1.6f
z fragments losing energy and 15E

int

= ! LN L L LA | ! ! LI L
- ATLAS Preliminary
Pb+Pbys,,=2.76 TeV
E L _=0.14 nb”

anti-k; R=0.4 E
pijt>1 00 GeV
0-10%/60-80%

10"
» Jets with fragments near z~1 are kinematically restricted

from having additional fragments except at lowest z
» No guarantee that jets contributing to depletion are same

jets contributing to excess

= Are jets with different parton showers/z/§ distributions
quenched differently/more likely to suffer less energy loss?
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The “Average Jet”

> In HI we have event-by-event fluctuations in both the
parton shower and the jet interactions with the medium

= Key question: Is quenching driven by average energy
loss effects or by significant event-by-event variation not
well represented by the average?
OB RN A A R RS AARA ARSI RARA R @‘- Use suppression measurement with

o | ATLAS Pb+Pb \'s,, =2.76 TeV . . .
5 aniok A< 04 [ra=o simple quenching models to give
estimate of average energy loss

- Contrast with asymmetry
: @ observation : jets frequently lose
more than 50% of their energy

' 0-10% ©
0-\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\l\'

40 ©60 80 100 120 140 160 180 200

\. plGeVI
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R Dependence: Simple Energy Loss Model

> Procedure adapted from PHENIX White Paper

> One way to get pr independent Rcp is if energy loss is

linearly pr rtion !
inearly proportionaltopr ¢ _ | _ g

> Assume power law for pr dependence of spectrum
AN A

» Obtain n from fit dpy  py”

> Then Siess can be inferred from measured Rcp

Sloss =1 — chl/(n—l) RCP — (1 — Sloss)n_l
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R Dependence: Simple Energy Loss Model

> Indicates that jets on ¢

lo

average lose 10-15%
of their energy in the
most central collisions

> Sioss is lower for R=0.5
jets— they lose 5%
less energy

> Fit with Sioss o< Ny

- k varies 0.75 — 0.9

- Larger than 2/3 predicted by L2 energy loss

0.25

0.2

0.15

0.1

0.05

0

50

100 150 200 250 300 350

and seen in PHENIX result for single hadrons

> Average energy loss not enough to account for observed
asymmetry where jets regularly lose 50% of their energy
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“Average” # “Typical”

» Must be careful with interpretation of average especially in
the case of jet properties

= Ensemble averaged distribution may not be
characteristic of individual event-by-event jet properties

= Can be compared to calculation but may not be the best
thing for building physical intuition

» Measurements of jet properties carry detailed information on
quenching but characteristics of quenching may vary greatly
from case to case

- Utilize differential measurements to make stronger
conclusions by restricting possible quenching scenarios

- Already experimentally accessible (e.g. jet v»)

= Open question which observables are most sensitive to
unknown aspects of quenching (e.g. radiative vs collisional)
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Constraints on Models and Mechanisms

> Typical- vs fluctuation- driven quenching paradigm
> How can measurements and calculations be more discriminating?
> Large quenching effects still preserve dijet A} correlations

> Rigorous approach considering full parton shower needed to
describe LHC data

> R dependence of single jet suppression suggests some medium
induced radiation recovered by going using larger jet definition

> Supported by preliminary jet shape measurements

» Conversely, asymmetry measurements show imbalance recovered
in soft particles at large R

> Need to be precise about energy being radiated away at “large
angles”

» Can such calculations also describe excess at low z/high £ in
fragmentation functions?

> Path length dependence needs serious investigation

> How does L dependence survive integration over realistic
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