Second Workshop on Jet Mod., Wayne State, Aug. 2013

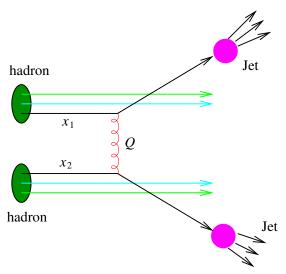
Jets in MARTINI

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

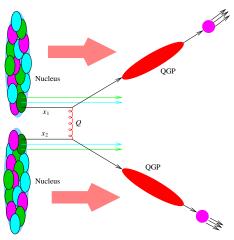
JETS

QCD Jets



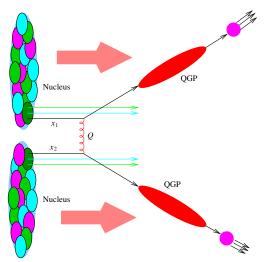
We understand this. More or less.

QCD Jets



Do we understand this?

Schematic Understanding



HIC Jet production scheme:

$$\frac{d\sigma_{AB}}{dt} = \int_{\text{geometry}} \int_{abcdc'} \\
\times f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\
\times \frac{d\sigma_{ab \to cd}}{dt} \\
\times \mathcal{P}(x_c \to x'_c | T, u^{\mu}) \\
\times D(z'_c, Q)$$

 $\mathcal{P}(x_c \to x_c' | T, u^{\mu})$: Medium modification of high energy parton property

Is this reasonable?

- Separation scale Q_{pdf} in the PDF
 Interpretation: Given the interaction scale Q_s, what part of vacuum fluctuations in hadrons (nuclei) do I regard as "particles"?
 Not much to do with per-jet energy loss
- Interaction scale Q_s in partonic $\frac{d\sigma}{dt}$ This determines how long the scattering lasts: $\tau_{sc} \sim 1/Q_s$ or the range of the scattering $I_{sc} \sim 1/Q_s$
- So far, pre-QGP. No real sense of "time" evolution.
- Medium plus fragmentation: Needs time evolution.

$$D_{\mathrm{med}}(z, Q_f) = \mathcal{P}(x_c \to x_c' | T, u^{\mu}) \otimes D(z_c', Q_f)$$

Big Question: Can these two be really separated?

Jeon (McGill) Jets 6 / 55

Conceptual problem: $D_{\text{med}} \approx \mathcal{P} \otimes D$

Hot medium

- Few approaches possible:
 - Medium increases effective Q_f in the frag. func. (plus drag, YaJEM)
 - Do mixed D and P (JEWEL, Q-PYTHIA)
 - Do D first then P (PYQUEN/HYDJET)
 - Do ₱ first then D (MARTINI)
- None of these are first principle approaches.
- Medium interaction may be formulated in real time, but the splitting scale 1/Q is not really "time".

McGill-AMY-MARTINI Team & Collaborators

- Charles Gale
- Sangyong Jeon
- Björn Schenke (Formerly McGill, now BNL)
- Clint Young (Formerly McGill, Now UMinn)
- Gabriel Denicol
- Matt Luzum

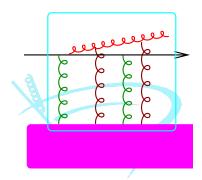
- Sangwook Ryu
- Gojko Vujanovic
- Jean-Francois Paquet
- Michael Richard
- Igor Kozlov
- Khadija El Berhoumi
- Jean-Bernard Rose
- ... and many thanks to G. Moore, S. Caron-Huot, U. Heinz,
- D. Srivastava, S. Bass, C. Nonaka, M. Mustafa, E. Frodermann,
- R. Fries, A. Majumder, L. Yaffe, P. Arnold, and others ...

Jeon (McGill) Jets 9/55

MARTINI

- Modular Alogorithm for Relativistic Treatment of Heavy IoN Interactions
- Hybrid approach
 - Calculate Hydrodynamic evolution of the soft mode
 - Propagate jets in the evolving medium according to McGill-AMY

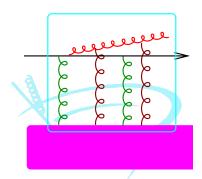
Jeon (McGill) Jets 10 / 55



First calculate the *local* radiation rate $\frac{dN_0}{d\omega a}$

The magenta box:

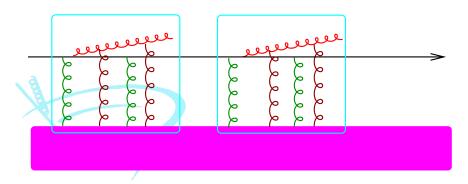
QGP medium characterized by T, g_s



First calculate the *local* radiation rate $\frac{dN_g}{d\omega dt}$

The cyan box:

- Infinite sum of ladder diagrams in momentum space
- Assumes $L_{\rm medium} \gg I_{\rm mfp}$

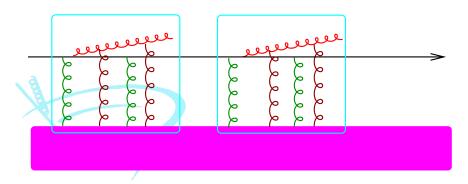


Then string them $up \equiv Solve$ the *rate* equation

$$\frac{dP(p)}{dt} = \int_{k} \frac{dN(p+k,k)}{dkdt} P(p+k) - P(p) \int_{k} \frac{dN(p,k)}{dkdt}$$

Coupled equations with separate P_q and P_g .

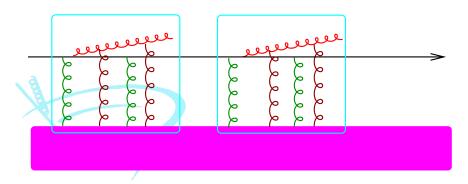
Jeon (McGill) Jets 11 /



Then string them $up \equiv Solve$ the rate equation

$$\frac{dP(p)}{dt} = \int_{k} \frac{dN(p+k,k)}{dkdt} P(p+k) - P(p) \int_{k} \frac{dN(p,k)}{dkdt}$$

The underlying medium evolves: The quantities $T(t, \mathbf{x}), u_{\mu}(t, \mathbf{x})$ or $\hat{q}(t, \mathbf{x}), l_{\text{mfp}}(t, \mathbf{x})$ must be obtained from hydro calc's

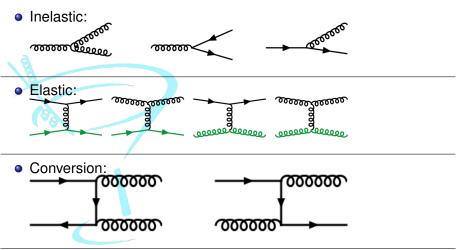


Then string them $up \equiv Solve$ the rate equation

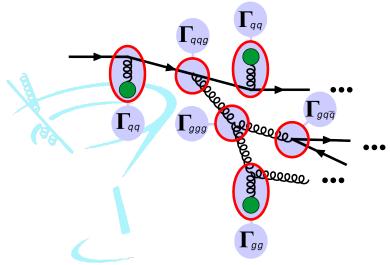
$$\frac{dP(p)}{dt} = \int_{k} \frac{dN(p+k,k)}{dkdt} P(p+k) - P(p) \int_{k} \frac{dN(p,k)}{dkdt}$$

Original McGill-AMY: AMY rates + Numerical solution of rate equ's. MARTINI: AMY rates + Monte-Carlo simulation of rate equ's.

Process include in MARTINI (all of them can be switched on & off):



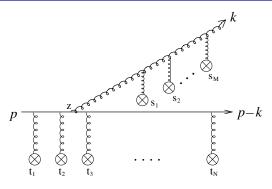
Photon: emission & conversion



An example path in MARTINI

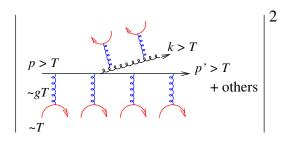
Leading order AMY rates

Main task in Energy Loss Calc's



 Main task: To sum over all such diagrams and then square. This gets you the rate.

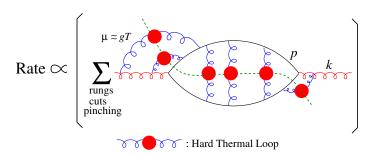
McGill-AMY



- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* ≪ 1, *p* > *T*, *k* > *T*
- Sum all interactions with the medium

Jeon (McGill) Jets 14/55

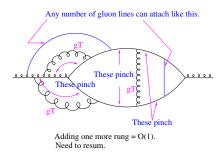
McGill-AMY



- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires $g \ll 1$, p > T, k > T
- Sum all interactions with the medium

Jeon (McGill) Jets 14 / 55

McGill-AMY



- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires $g \ll 1$, p > T, k > T
- Sum all interactions with the medium
- Leading order: 3 different kinds of collinear pinching poles

Jeon (McGill) Jets 14 / 9

SD-Eq:

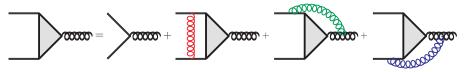


Figure from G. Qin

Integral Eq:

Jeon (McGill)

$$\begin{split} 2\mathbf{h} &= i\delta E(\mathbf{h}, p, k) \mathbf{F}(\mathbf{h}) + g^2 \int \frac{d^2 q_\perp}{(2\pi)^2} C(q_\perp) \Big\{ (C_8 - C_a/2) [\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} - k \mathbf{q}_\perp)] \\ &+ (C_a/2) [\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} + p \mathbf{q}_\perp)] + (C_a/2) [\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} - (p - k) \mathbf{q}_\perp)] \Big\} \\ \delta E(\mathbf{h}, p, k) &= \frac{\mathbf{h}^2}{2pk(p - k)} + \frac{m_k^2}{2k} + \frac{m_{p - k}^2}{2(p - k)} - \frac{m_p^2}{2p}, \quad C(q_\perp) = \frac{m_D^2}{q_\perp^2 (q_\perp^2 + m_D^2)} \end{split}$$

Jets

For g o q ar q, $(C_s - C_a/2)$ term is the one with ${f F}({f h} - p{f q}_\perp)$ rather tan ${f F}({f h} - k{f q}_\perp)$

15 / 55

AMY Rates

Rate for p > T, k > T (valid for $p \gg T$ and $k \gg T$ as well)

$$\frac{dN_g(p,k)}{dkdt} = \frac{g_s^2}{16\pi p^7} \frac{1}{1 \pm e^{-k/T}} \frac{1}{1 \pm e^{-(p-k)/T}} \times \\ \times \begin{cases} C_f \frac{1+(1-x)^2}{x^3(1-x)^2} & q \to qg \\ 2N_f T_f \frac{x^2+(1-x)^2}{x^2(1-x)^2} & g \to q\bar{q} \\ C_g \frac{1+x^4+(1-x)^4}{x^3(1-x)^3} & g \to gg \end{cases} \times \int \frac{d^2\mathbf{h}}{(2\pi)^2} 2\mathbf{h} \cdot \operatorname{Re} \mathbf{F}(\mathbf{h}, p, k) \,,$$

Jeon (McGill) Jets 16 / 55

The rate equation to solve

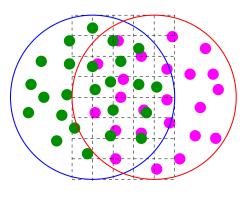
Rate equation to solve

$$\begin{split} \frac{dP_{q\bar{q}}(p)}{dt} &= \int_{k} P_{q\bar{q}}(p+k) \frac{d\Gamma_{qg}^{q}(p+k,k)}{dkdt} - \int_{k} P_{q\bar{q}}(p) \frac{d\Gamma_{qg}^{q}(p,k)}{dkdt} \\ &+ 2 \int_{k} P_{g}(p+k) \frac{d\Gamma_{q\bar{q}}^{g}(p+k,k)}{dkdt} \,, \\ \frac{dP_{g}(p)}{dt} &= \int_{k} P_{q\bar{q}}(p+k) \frac{d\Gamma_{qg}^{q}(p+k,p)}{dkdt} + \int_{k} P_{g}(p+k) \frac{d\Gamma_{gg}^{g}(p+k,k)}{dkdt} \\ &- \int_{k} P_{g}(p) \left(\frac{d\Gamma_{q\bar{q}}^{g}(p,k)}{dkdt} + \frac{d\Gamma_{gg}^{g}(p,k)}{dkdt} \Theta(k-p/2) \right) \end{split}$$

Actual solution by Monte-Carlo

Jeon (McGill) Jets 17 / 5

MARTINI Step 1 - Jet positions



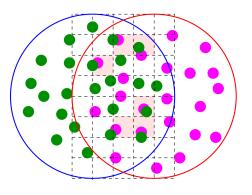
- Choose an impact parameter.
- Sample the projectile and the target nuclei according to the WS distribution.
- In the overlap region, make a transverse-grid of size σ_{inel}.
 Determine the number of jet events in a given grid element according to σ_{jet}(p_T^{min})/σ_{inel}:w

OR: Sample a jet position from

$$P_{AB}(\mathbf{b}, \mathbf{r}_{\perp}) = rac{T_A(\mathbf{r}_{\perp} + \mathbf{b}/2)T_B(\mathbf{r}_{\perp} - \mathbf{b}/2)}{T_{AB}(b)}$$

and embed one jet per event. Do this many times per event.

MARTINI Step 1 - Jet positions



- Choose an impact parameter.
- Sample the projectile and the target nuclei according to the WS distribution.
- In the overlap region, make a transverse-grid of size σ_{inel} . Determine the number of jet events in a given grid element according to $\sigma_{\text{jet}}(p_T^{\min})/\sigma_{\text{inel}}$

OR: Sample a jet position from

$$P_{AB}(\mathbf{b}, \mathbf{r}_{\perp}) = rac{T_A(\mathbf{r}_{\perp} + \mathbf{b}/2)T_B(\mathbf{r}_{\perp} - \mathbf{b}/2)}{T_{AB}(b)}$$

and embed one jet per event. Do this many times per event.

MARTINI Step 2 - Initial jet spectrum

- We use PYTHIA 8.1
- PDF selection using LHAPDF
- Shadowing through EKS98 or EPS08
- Isospin effect for neutrons taken into account

Unlike PYTHIA 6, PYTHIA 8 parameters are not yet fine-tuned. MARTINI is usually tuned to reproduce π and γ in pp.

MARTINI Step 2 - Showers

- Let PYTHIA 8.1 do the showers.
- Either
 - Either do the whole shower including the final shower
 - Or stop the shower when the medium evolution starts or when

$$Q_{\min} = \sqrt{rac{oldsymbol{p}_{ au}}{ au_0}}$$

• Parton position changes for $au < au_0$

MARTINI Step 3 - Medium evolution

- First load the hydro evolution history.
- A parton starts at $\tau = 0$ i.e. z = 0, t = 0
- Move the position until $\tau = \tau_0$
- Go to the rest frame of cell where the jet parton is currently at.
- According to the local conditions, calculate the total interaction probability within $\Delta t_{\rm local}$.

$$P = \sum_{i} \Delta t_{local} \int dk \frac{d\Gamma_{i}}{dk}$$

- Then generate a random number to decide to have interactions
- If yes, decide which process to do according to the relative weights
- Sample the final state particle momenta according to the chosen rate

MARTINI Step 3 - Medium evolution

- If the energy of the emitted parton is above a threshold, add it to the hard parton list
- Lorentz transform to the lab frame and move the final state particles to the next position
- Repeat

MARTINI Step 4 - Hadronization

- Evolution ends when
 - E_{jet} < 4T in the cell rest frame
 - It enters the hadronic phase
- Hadronization through PYTHIA's lund fragmenation model
 - Keeping track of colors

Ideal MUSIC

• While this is happening in the background ...

 Jeon (McGill)
 Jets
 25 / 55

MARTINI – The Movie

Jeon (McGill) Jets 26 / 58

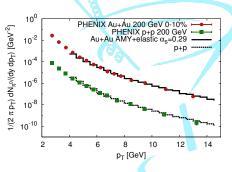
MARTINI – The Movie

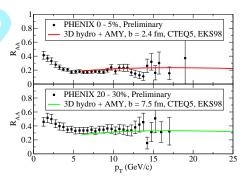
Jeon (McGill) Jets 27/5

Pion production

[Schenke, Jeon and Gale, Phys. Rev. C 80, 054913 (2009)]

• π^0 spectra and R_{AA}

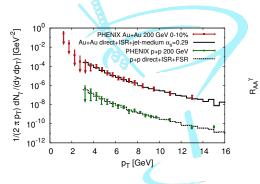


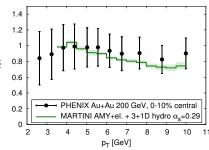


Photon production

[Schenke, Jeon and Gale, Phys. Rev. C 80, 054913 (2009)]

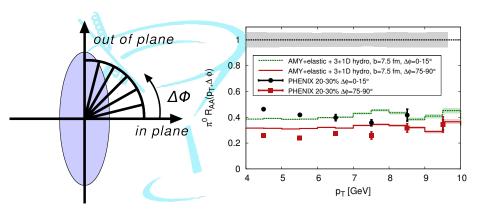
• Spectra and R_{AA}^{γ}





Azimuthal dependence of R_{AA}

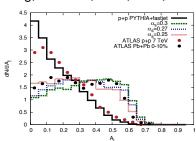
• $R_{AA}(p_T, \Delta \phi)$



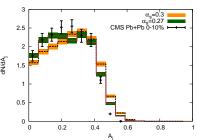
MARTINI – dN/dA

- $A = (E_t E_a)/(E_t + E_a)$
- Right now ideal hydro with a smooth initial condition
- Full jet reconstruction with FASTJET

[Young, Schenke, Jeon, Gale, arXiv:1103.5769]



ATLAS, QM 2011



CMS, arXiv: 1102.1957 (2011)

Towards NL# MARTINI

Towards NL# MARTINI

- Finite evolution time effects
- Finite medium size effects
- Relaxing soft exchange approximation
- Recoiled thermal partons
- Running coupling

Mainly following:

BDMPS

Salgado & Wiedemann PRD 68 014008 (2003)

Arnold & Dogan, PRD78 065008 (2008)

Arnold & Xiao, PRD78 125008 (2008)

Caron-Huot & Gale PRC 82 064902 (2010)

In-medium radiation rate

[Zakharov JETP 65, 615 (1997), Caron-Huot & Gale PRC 82 064902 (2010)]. From now on we follow Caron-Huot and Gale closely.

$$\frac{d\Gamma_{bc}^{a}}{dk} = \frac{P_{bc}^{a(0)}(x)}{\pi p} \operatorname{Im} \left(\int_{0}^{t} dt' \int_{\mathbf{q}_{\perp}, \mathbf{p}_{\perp}} \frac{\mathbf{q}_{\perp} \cdot \mathbf{p}_{\perp}}{\delta E(\mathbf{q}_{\perp})} \mathcal{C}(t) K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp}) \right)$$

• $K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp})$: Retarded propagator of parton a from t' to t with the Hamiltonian $H = \delta E - iC$

$$\begin{split} & \text{where} \\ & \delta E = \frac{\rho \mathbf{p}_{\perp}^2}{k(\rho - k)} + \frac{m_b^2}{2k} + \frac{m_c^2}{2(\rho - k)} - \frac{m_a^2}{2\rho} \quad \text{and} \quad C(\mathbf{q}_{\perp}) = \frac{g_s^2 m_D^2 T}{\mathbf{q}_{\perp}^2 (\mathbf{q}_{\perp}^2 + m_D^2)} \\ & \mathcal{C} = \frac{C_b + C_c - C_a}{2} v(\mathbf{x}_{\perp}) + \frac{C_a + C_c - C_b}{2} v(\frac{k}{\rho} \mathbf{x}_{\perp}) + \frac{C_a + C_b - C_c}{2} v(\frac{\rho - k}{\rho} \mathbf{x}_{\perp}) \\ & \text{with} \\ & v(\mathbf{x}_{\perp}) = \int_{\mathbf{q}_{\perp}} C(\mathbf{q}_{\perp}) (1 - e^{i\mathbf{q}_{\perp} \cdot \mathbf{x}_{\perp}}) \quad \text{and} \quad C(\mathbf{q}_{\perp}) = \frac{g_s^2 m_D^2 T}{\mathbf{q}_{\perp}^2 (\mathbf{q}_{\perp}^2 + m_D^2)} \end{split}$$

The same as the AMY kernel, but for finite t.

In-medium radiation rate

[Zakharov JETP 65, 615 (1997), Caron-Huot & Gale PRC 82 064902 (2010)]. From now on we follow Caron-Huot and Gale closely.

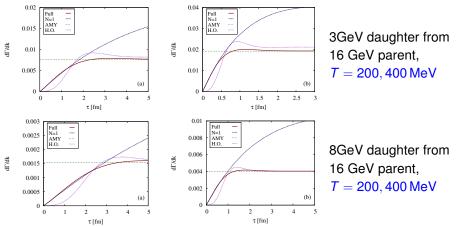
$$\frac{d\Gamma_{bc}^{a}}{dk} = \frac{P_{bc}^{a(0)}(x)}{\pi p} \operatorname{Im} \left(\int_{0}^{t} dt' \int_{\mathbf{q}_{\perp}, \mathbf{p}_{\perp}} \frac{\mathbf{q}_{\perp} \cdot \mathbf{p}_{\perp}}{\delta E(\mathbf{q}_{\perp})} \mathcal{C}(t) K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp}) \right)$$

• $K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp})$: Retarded propagator of parton a from t' to t with the Hamiltonian $H = \delta E - iC$

$$\begin{split} & \text{where} \\ & \delta E = \frac{p \mathbf{p}_{\perp}^2}{k(p-k)} + \frac{m_b^2}{2k} + \frac{m_c^2}{2(p-k)} - \frac{m_a^2}{2p} \quad \text{and} \quad C(\mathbf{q}_{\perp}) = \frac{g_s^2 m_D^2 T}{\mathbf{q}_{\perp}^2 (\mathbf{q}_{\perp}^2 + m_D^2)} \\ & C\psi(\mathbf{p}_{\perp}) = \int_{\mathbf{q}_{\perp}} C(\mathbf{q}_{\perp}) \Big(\frac{C_b + C_c - C_a}{2} \left[\psi(\mathbf{p}_{\perp}) - \psi(\mathbf{p}_{\perp} - \mathbf{q}_{\perp}) \right] + \\ & \frac{C_a + C_c - C_b}{2} \left[\psi(\mathbf{p}_{\perp}) - \psi(\mathbf{p}_{\perp} + (k/p)\mathbf{q}_{\perp}) \right] + \\ & \frac{C_a + C_b - C_c}{2} \left[\psi(\mathbf{p}_{\perp}) - \psi(\mathbf{p}_{\perp} + (1 - k/p)\mathbf{q}_{\perp}) \right] \Big) \end{split}$$

The same as the AMY kernel, but for finite *t*.

Radiation rate by Caron-Huot & Gale (Static medium)



N = 1: Opacity expansion, H.O.: BDMPS SHO

Full solution: Interpolates between the 1-st order opacity expansion (OE1)

and AMY
$$\Longrightarrow \frac{d\Gamma}{dk} \approx \theta_{\Lambda}(OE1 < AMY) \frac{d\Gamma_{OE1}}{dk} + \theta_{\Lambda}(OE1 > AMY) \frac{d\Gamma_{AMY}}{dk}$$

For evolving media

[Caron-Huot & Gale PRC 82 064902 (2010)]

$$\frac{d\Gamma_{bc}^{a}}{dk} = \frac{P_{bc}^{a(0)}(x)}{\pi \rho} \operatorname{Im} \left(\int_{0}^{t} dt' \int_{\mathbf{q}_{\perp}, \mathbf{p}_{\perp}} \frac{\mathbf{q}_{\perp} \cdot \mathbf{p}_{\perp}}{\overline{\delta E}(t, \mathbf{q}_{\perp})} \tilde{\gamma}(t) \mathcal{C}(t) K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp}) \right)$$

where

Energy denominator

$$i/\overline{\delta E}(t,\mathbf{q}_{\perp}) = \int_{t}^{\infty} dt' \, e^{-i\int_{t}^{t'} dt'' \, \delta E(t,\mathbf{q}_{\perp})}$$

Time dependence comes in through the thermal and Debye masses $m \sim gT(t, \mathbf{x})$

Lorentz γ factor

$$\tilde{\gamma} = \frac{1 - v \cos \theta}{\sqrt{1 - v^2}}$$

Jeon (McGill) Jets 37 / 55

Jeon (McGill)

Knowing the rate evolve the density according to

$$\begin{split} \frac{dP_{q\bar{q}}(p)}{dt} &= \int_{k} P_{q\bar{q}}(p+k) \frac{d\Gamma_{qg}^{q}(p+k,k)}{dk} - \int_{k} P_{q\bar{q}}(p) \frac{d\Gamma_{qg}^{q}(p,k)}{dk} \\ &+ 2 \int_{k} P_{g}(p+k) \frac{d\Gamma_{q\bar{q}}^{g}(p+k,k)}{dk} \,, \\ \frac{dP_{g}(p)}{dt} &= \int_{k} P_{q\bar{q}}(p+k) \frac{d\Gamma_{qg}^{g}(p+k,p)}{dk} + \int_{k} P_{g}(p+k) \frac{d\Gamma_{gg}^{g}(p+k,k)}{dk} \\ &- \int_{k} P_{g}(p) \left(\frac{d\Gamma_{q\bar{q}}^{g}(p,k)}{dk} + \frac{d\Gamma_{gg}^{g}(p,k)}{dk} \Theta(k-p/2) \right) \end{split}$$

 dΓ/dk: In principle non-local through the trajectory and the finite time dependences

Jets

38 / 55

What needs to be done:

- Calculate the Green function $K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp})$
- Calculate the rate

$$\frac{d\Gamma_{bc}^{a}(t)}{dk} = \frac{P_{bc}^{a(0)}(x)}{\pi p} \operatorname{Im} \left(\int_{0}^{t} dt' \int_{\mathbf{q}_{\perp}, \mathbf{p}_{\perp}} \frac{\mathbf{q}_{\perp} \cdot \mathbf{p}_{\perp}}{\delta E(\mathbf{q}_{\perp})} \mathcal{C}(t) K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp}) \right)$$

- Use this rate to do the MC evolution
- Difficulty: Calculate the Green function $K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp})$

Jeon (McGill) Jets 39 /

If Brick

 First order opacity expansion is "local" [GLV and also Caron-Huot and Gale]

$$\begin{split} &\frac{d\Gamma_{bc}^{a}(t)}{dk} = \frac{P_{bc}^{a(0)}(x)p}{4\pi k^{2}(p-k)^{2}} \int_{\mathbf{q}_{\perp},\mathbf{p}_{\perp}} C(\mathbf{q}_{\perp}) \frac{1 - \cos(\delta E(\mathbf{p})t)}{\delta E(\mathbf{p}_{\perp})} \\ &\times \left[\frac{C_{b} + C_{c} - C_{a}}{2} \left(\frac{\mathbf{p}_{\perp}^{2}}{\delta E(\mathbf{p}_{\perp})} - \frac{\mathbf{p}_{\perp} \cdot (\mathbf{p}_{\perp} - \mathbf{q}_{\perp})}{\delta E(\mathbf{p}_{\perp} - \mathbf{q}_{\perp})} \right) \right. \\ &+ \frac{C_{a} + C_{c} - C_{b}}{2} \left(\frac{\mathbf{p}_{\perp}^{2}}{\delta E(\mathbf{p}_{\perp})} - \frac{\mathbf{p}_{\perp} \cdot (\mathbf{p}_{\perp} + \frac{k}{p}\mathbf{q}_{\perp})}{\delta E(\mathbf{p}_{\perp} + \frac{k}{p}\mathbf{q}_{\perp})} \right) \right] \\ &+ \frac{C_{a} + C_{b} - C_{c}}{2} \left(\frac{\mathbf{p}_{\perp}^{2}}{\delta E(\mathbf{p}_{\perp})} - \frac{\mathbf{p}_{\perp} \cdot (\mathbf{p}_{\perp} + \frac{p-k}{p}\mathbf{q}_{\perp})}{\delta E(\mathbf{p}_{\perp} + \frac{p-k}{p}\mathbf{q}_{\perp})} \right) \end{split}$$

T and m_D dependence can be pulled out of the integral except in the cosine.

If Brick

Possible approach

Implement

$$\frac{d\vec{\Gamma}}{dk} \approx \theta_{\Lambda}(OE1 < AMY) \frac{d\Gamma_{OE1}}{dk} + \theta_{\Lambda}(OE1 > AMY) \frac{d\Gamma_{AMY}}{dk}$$

- This requires
 - Either calculate the OE1 rate at every time step until the AMY rate takes over
 - Or calculate a big table of $d\Gamma_{OE1}/dk$ in (p, k, t, T) and interpolate
 - Or use Taylor expansion
 - Typically, $\delta E = O(g^2 T^2/k)$ so $\delta E t \lesssim 1$
 - $1 \cos(\delta E t) \approx \frac{(\delta E t)^2}{2} \frac{(\delta E t)^4}{24} \frac{(\delta E t)^6}{720}$ may be adequate. This is good up to $\delta E t \lesssim 2$
 - Reduces to 3 tables in (p/T, k/T)

Jeon (McGill) Jets 41 / 55

If Expanding Medium

- Opacity expansion part is short \sim 1 fm when temperature is high $\sim 400\,\text{MeV}$
- Two pass approximation may be possible
 - First pass to determine the 0-th order trajectory without any interactions
 - Second pass to evaluate the 1-st order opacity expansion using $K(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp}) \approx K_{\text{free}}(t, \mathbf{q}_{\perp}; t', \mathbf{p}_{\perp})$
 - Then implement $\frac{d\Gamma}{dk} \approx \theta_{\Lambda}(OE1 < AMY) \frac{d\Gamma_{OE1}}{dk} + \theta_{\Lambda}(OE1 > AMY) \frac{d\Gamma_{AMY}}{dk}$
- It's still going to be computing intensive
- MARTINI currently implements approximate parametrized dΓ/dk

- Local rate equation approach breaks down when l_{coh} > L where L is the "size of the fireball" and l_{coh} is the "coherence length" (these are not so well defined in an expanding system).
- $\bullet \ \textit{I}_{\rm coh} \approx \textit{I}_{\rm mfp} \sqrt{\frac{\omega_g}{E_{\rm LPM}}} = \sqrt{\frac{\omega_g}{\hat{q}}} \\ \text{where } \textit{I}_{\rm mfp} \sim 1/g^2 \textit{T}, \ \mu \sim \textit{m}_T \sim \textit{gT}, \ \textit{E}_{\rm LPM} = \mu^2 \textit{I}_{\rm mfp} \ \text{and} \ \hat{q} = \mu^2 /\textit{I}_{\rm mfp}$
- Soft gluon emission, $\omega_g < \mu^2 I_{mfp}$, \Longrightarrow Coherence matters not. One BH per I_{mfp} . No need to resum.
- Hard gluon emission, $L^2\hat{q} > \omega_g > \mu^2 I_{\rm mfp}$, —> Coherence matters. One BH per $I_{\rm coh}$ or more precisely, AMY.
- The rate equation approach is OK for these.

Jeon (McGill) Jets 43 / 5

Rough Estimates

- Very Hard gluon emission, ω > L²q̂
 Only one effective scattering possible within L.
 The rate goes back to BH/L.
- $\frac{d\Gamma}{dk}$ should know whether emitted $k = \omega_g > L^2 \hat{q}$. But we won't know that until the evolution is done and L determined.

Jeon (McGill) Jets 44 / 9

- Conceptually clear. But how to implement it?
- If a brick: With the jet energy $p = E_{\rm jet} > L^2 \hat{q}$ and the emitted gluon energy $k = \omega_g$
 - For a given parton, calculate the very hard emission probability

$$P_{>} = \int_{L^2\hat{q}}^{p} dk \int_{0}^{L} dt \, \frac{d\Gamma(p, k; t)}{dk}$$

- Generate a random number and decide whether to emit very hard gluons
- If yes, sample

$$\frac{dP_{>}}{dk} = \int_{0}^{L} dt \, \frac{d\Gamma(p, k; t)}{dk}$$

• If no, use the rate equation but only for $\omega_g < L^2 \hat{q}$

- Conceptually clear. But how to implement it?
- If an evolving medium:
 - How to calculate $E_L = L^2 \hat{q}$?

$$\hat{q} = \frac{4}{3} \int_{\mathbf{q}_{\perp}} \mathbf{q}_{\perp}^2 \frac{g_s^2 m_D^2 T}{\mathbf{q}_{\perp}^2 (\mathbf{q}_{\perp}^2 + m_D^2)} = \frac{1}{3\pi} g^2 m_D^2 T \ln(1 + q_{\text{max}}^2 / m_D^2)$$

Local quantity. Changes in time.

In Phys.Rev. D68 (2003) 014008 by C. Salgado and U. Wiedemann

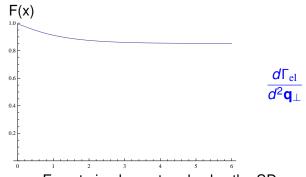
$$ar{\hat{q}} = rac{2}{L^2} \int_{\xi_0}^{L+\xi_0} d\xi \, (\xi - \xi_0) \hat{q}(\xi)$$

Here ξ is the "time" in the cell frame.

- Effective $\bar{E}_L = L^2 \bar{\hat{q}}$
- Single pass formalism is not going to work Iteration needed. Two passes may be enough.

Relaxing the soft exchange approximation

- The elastic scattering kernel $\frac{d\Gamma_{\rm AMY}}{d^2{\bf q}_\perp} = \frac{g_s^2 T m_D^2}{{\bf q}_\perp^2 ({\bf q}_\perp^2 + m_D^2)}$ is for soft
- Correction factor valid up to $q_{\perp}/T = O(1)$ [Arnold and Xiao, Phys.Rev.D78:125008, 2008]



$$rac{d I_{
m el}}{d^2 {f q}_{\perp}} = rac{d I_{
m AMY}}{d^2 {f q}_{\perp}} F(q_{\perp}/T)$$

 Easy to implement and solve the SD-equation for AMY rate – Already in MARTINI.

Recoil

- s-channel elastic processes can convert a thermal parton into a jet parton
- Kinematics is not hard to implement. Lund model hadronization is.

Jeon (McGill) Jets 48 / 55

Running coupling

Where g appears: AMY Integral equation

$$\begin{split} 2\mathbf{h} &= i\delta E(\mathbf{h}, \rho, k) \mathbf{F}(\mathbf{h}) + g^2 \int \frac{d^2 q_\perp}{(2\pi)^2} C(q_\perp) \times \\ &\times \left\{ (C_s - C_a/2) [\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} - k \mathbf{q}_\perp)] \right. \\ &\left. + (C_a/2) [\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} + \rho \mathbf{q}_\perp)] \right. \\ &\left. + (C_a/2) [\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} - (\rho - k) \mathbf{q}_\perp)] \right\} \\ \delta E(\mathbf{h}, \rho, k) &= \frac{\mathbf{h}^2}{2 \rho k (\rho - k)} + \frac{m_k^2}{2 k} + \frac{m_{\rho - k}^2}{2 (\rho - k)} - \frac{m_\rho^2}{2 \rho} \, . \\ C(q_\perp) &= \frac{m_D^2}{q_\perp^2 (q_\perp^2 + m_D^2)} \end{split}$$

• Scaling $h \to g\tilde{h}$, $\mathbf{q}_{\perp} \to g\tilde{\mathbf{q}_{\perp}}$, $m \to g\tilde{m}$ and $\mathbf{F}(h) \to \tilde{\mathbf{F}}(\tilde{\mathbf{h}})/g$ renders this equation independent of g

Running coupling

Two different origin of g in the rate

$$\begin{split} \frac{dN_g(p,k)}{dkdt} & = & \frac{g^2}{16\pi p^7} \frac{1}{1 \pm e^{-k/T}} \frac{1}{1 \pm e^{-(p-k)/T}} \\ & \times \left\{ \begin{array}{l} C_f \frac{1 + (1-x)^2}{x^3(1-x)^2} & q \to qg \\ 2N_f T_f \frac{x^2 + (1-x)^2}{x^2(1-x)^2} & g \to q\bar{q} \\ C_a \frac{1 + x^4 + (1-x)^4}{x^3(1-x)^3} & g \to gg \end{array} \right\} \\ & \times g^2 \int \frac{d^2\tilde{\mathbf{h}}}{(2\pi)^2} 2\tilde{\mathbf{h}} \cdot \mathrm{Re}\tilde{\mathbf{F}}(\tilde{\mathbf{h}},p,k) \,, \end{split}$$

- g²: Gluon radiation vertex
- g²: Elastic scattering rate

Jeon (McGill) Jets 50 / 55

Running coupling

Radiation:

- $g^2/4\pi \rightarrow \alpha_s(Q)$ where Q is the hard scale
- Implemented in MARTINI

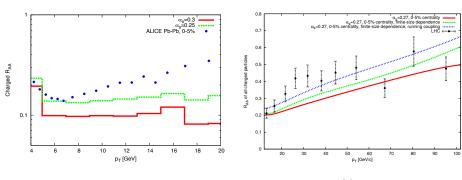
Elastic:

- The elastic scattering kernel $\frac{d\Gamma_{\rm AMY}}{d^2{\bf q}_\perp} = \frac{g_s^2 T m_D^2}{{\bf q}_\perp^2 ({\bf q}_\perp^2 + m_D^2)}$ is for soft ${\bf q}_\perp$.
- To include large q_{\perp} [Arnold and Dogan, Phys.Rev.D78:065008,2008]

$$rac{g_{ t s}^2 m_D^2}{{f q}_{ot}^2 ({f q}_{ot}^2 + m_D^2)}
ightarrow 4\pi rac{lpha_{oldsymbol{S}}(q_{ot}) m_D^2}{{f q}_{ot}^2 ({f q}_{ot}^2 + m_D^2)}$$

Not yet in MARTINI, but easy enough to implement

MARTINI with finite time and running coupling corrections



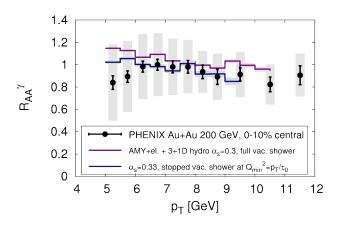
Before

After Young, Schenke, Jeon, Gale, arXiv:1209.5679

 Slope change (flattening) at high p_T may be due to the finite size effect

Effect of different vacuum-medium transition

• Photons: Full PYTHIA shower vs. $Q_{\min}^2 = p_T^2/ au_0^2$



PRELIMINARY

Conclusions/Outlook

- Biggest conceptual problem in MC for HIC: Formulation of time evolution.
- NL# MARTINI
 - Finite time
 - Finite size
 - Correction to the elastic kernel
 - Running coupling
- MUSIC+MARTINI+UrQMD is in the work.

Jet-Medium interaction