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Outline: Energy loss and transport in weakly coupled plasmas at “NLO”

1. Philosophy of weakly coupled calculations – there is only one right answer . . .

(a) Collisional vs. radiative loss

(b) Corrections to collinear formalism

(c) Relation between drag (or ê) and radiative loss

2. Heavy Quark Drag (diffusion): S. Caron-Huot and G. Moore, JHEP

3. Energy loss of light quarks and gluons Jacopo Ghiglieri, H. Gervais, G. Moore, DT, in progress

4. Thermal photons Jacopo Ghiglieri, J. Hong, A. Kurkela, G. Moore, DT, JHEP



Perturbation theory can work – from Borsanyi Quark Matter Talk

• HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD – the Finish Group
3

where we have assumed Nc = 3 (for larger Nc we would
have two independent quartic terms for the A0 field), and
where the last term �LE stands for a series of higher order
non-renormalizable operators that start to contribute to
the EoS only beyond O(g6). The theory is parametrized
by four constants: The three-dimensional gauge coupling
g3, the electric screening mass mE, the cubic coupling
⇣ ⇠ P

f µf (see [32] for details), as well as the quartic
coupling �E. All of these parameters have expansions
in powers of the four-dimensional gauge goupling g, and
their values have been determined to the accuracy re-
quired by the four-loop evaluation of the EoS, some even
beyond this (see e.g. [33]).

As discussed in [24], the above way of writing the
full theory pressure suggests a very natural resummation
scheme: While the unresummed weak coupling expan-
sion is obtained by expanding the (perturbatively deter-
mined) EQCD partition function in powers of the four-
dimensional gauge coupling g, one may alternatively sim-
ply skip this last step and keep pEQCD a function of the
e↵ective theory parameters, writing

T pEQCD = pM + pG, (9)

where the functions pM and pG can be read o↵ from
eqs. (3.9) and (3.12) of [4]. In [24], this procedure was
observed to lead to a considerable improvement of the
convergence and renormalization scale dependence of the
full theory pressure at zero chemical potential. It can,
however, be applied to the case of the finite density pres-
sure or the quark number susceptibilities with equal ease,
which is what we have implemented in our calculations.
An important step in this in principle straightforward ex-
ercise is to use the e↵ective theory parameters in a form,
where they have been analytically expanded in powers of
µ/T ; cf. appendix D of [4] and appendix B of [34]. We
refrain from writing the resulting, very long expressions
here, but simply display the result of the procedure in
the plots to follow.

Choice of parameters. Before proceeding to a quanti-
tative comparison of our predictions with lattice data, we
will briefly discuss our choices for the parameters appear-
ing in the results. These include the values of the renor-
malization scale ⇤̄ and the QCD scale ⇤MS, in addition
to which a prescription for determining the form of the
running gauge coupling must be specified. In both the
HTLpt and DR calculations, we follow standard choices
used in the literature, which we summarize below.

In perturbative calculations of bulk thermodynamic
observables, the renormalization scale ⇤̄ is typically given
a value of roughly 2⇡T and then varied by a factor of 2
in order to measure the sensitivity of the result with re-
spect to this choice. Optimally, the central value should
result from a presecription such as the Fastest Apparent
Convergence (FAC) or the Principle of Minimal Sensi-
tivity (PMS). For the HTLpt result, neither of these is
however available, and hence the central value is chosen
as 2⇡T . In the DR calculation, we on the other hand
follow a commonly used prescription introduced in [29]
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FIG. 1. A comparison of our HTLpt (wider, red band)
and DR (blue band) results for the second order baryon
number susceptibility �B/T 2 with the lattice results of the
HotQCD [1] (black dots, extending to T ⇡ 250 MeV) and
Wuppertal-Budapest [2] (WB, green dots) collaborations.
The bands corresponding to the perturbative results originate
from varying the values of ⇤̄ and ⇤MS within the ranges indi-
cated in the text. Asymptotically, all of the results approach
the limiting value of 1/3.

and apply FAC to the three-dimensional gauge coupling
g3, thus obtaining ⇤̄central ⇡ 1.445 ⇥ 2⇡T .

For the dependence of the gauge coupling constant on
the renormalization scale, we use a one-loop perturba-
tive expression in the HTLpt result and a two-loop one
in the DR case. This is in accordance with the usual
rule that the uncertainties originating from the running
of the gauge coupling should not exceed those due to the
perturbative computation itself. Finally, for the choice of
the QCD scale ⇤MS we use a recent lattice determination
of the value of the strong coupling constant at a refer-
ence scale of 1.5 GeV [35]. Requiring that our one- and
two-loop running couplings agree with this, we obtain
the values of 176 and 283 MeV in these two cases, re-
spectively. To be conservative, we vary the value of ⇤MS
around these numbers by 30 MeV, which is somewhat
larger than the reported lattice error bars.

Results. In Fig. 1, we display our results for the sec-
ond order baryon number susceptibility �B ⌘ @2p/@µ2

B ,
which to a very good accuracy satisfies the relation
�B = �uu/3 and for which most of the lattice data has
been derived. As the widths of the red and blue bands —
corresponding respectively to the HTLpt and DR results
— demonstrate, the dependence of our results on the
renormalization scale and the value of ⇤MS is rather mild.
For instance, a comparison of the DR band with the un-
resummed four-loop result of [3] shows a reduction of the
uncertainty by a factor of nearly 10 in this temperature
range. Our two results are in addition in reasonably good
agreement with each other, considering that the current
HTLpt result is only of one-loop order. A comparison
with the recent continuum extrapolated lattice data of

Experiment

Lattice Data

HTLpt
EQCD

Want to compute e-loss and viscosity to similar precision at high T!

Baryon # 
succetibility Resummation

Works!!



Heavy Quark Drag at “NLO”



Computing Heavy Quark Diffusion at NLO

• Write down an equation of motion for the heavy quarks.

dx

dt
=

p

M
dp

dt
= − ηDv︸︷︷︸

Drag

+ ξ(t)︸︷︷︸
Random Force

• The drag and the random force are related

〈ξi(t)ξj(t′)〉 =
κ

3
δij δ(t− t′) ηD =

κ

2T

κ = Mean Squared Momentum Transfer per Time

All parameters are related to the heavy quark diffusion coefficient or κ



Giving the diffusion coefficient a rigorous definition

• Compare the Langevin process to the microscopic theory

Langevin
dp

dt
= −ηDv + ξ(t)

Microscopic Theory
dp

dt
= F(t,x) = qE(t,x)

• Match the Langevin to the Microscopic Theory

Langevin

κ =

∫
dt 〈ξ(t) ξ(0)〉

Microscopic Theory

κ =

∫
dt 〈F(t,x)F(0,x)〉HQ

Momentum Diffusion Coefficient↔ Electric Field Correlator



Force-force correlators beyond leading order (Guy D. Moore and Simon-Caron Huot)
Needed diagrams and rules

Double line: Wilson line:

• Integrate over times of vertices, but in time order shown

• All at same spatial point

• Vertices on ends: piA0

• Vertices in middle: A0

15

F(0) F(t)

Perturbation theory in:

gs ∼
mD

T
NOT αs =

g2s
4π

• From from non-linear interactions of thermal classical gauge fields:

Force ∝ nB ∼
T

ω
∼ 1

g

Schematically we have:

κ

︸︷︷︸
diffusion rate

= (g4T 3)
[
C0 log

(
T

mD

)
+ C1

︸ ︷︷ ︸
leading order

+C2 g

︸︷︷︸
NLO

]



(Guy D. Moore and Simon Carot-Huot)
Coupling dependence: 3-flavor QCD
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Perturbative expansion looks very bad.
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Perturbation theory is a disaster for kinetics even for T = MZ .

Why?
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Heavy Quark Drag&Diffusion Gluon Drag&Diffusion



Light quark and gluon e-loss at “NLO”



Three mechanisms for energy loss at LO

1. Hard Collisions: 2↔ 2

Q~T

P ~ E

2. Drag: collisions with soft random classical field

P~E

~gT ~gT

dp

dt
= −η(µ)v̂



3. Brem: 1↔ 2

• random walk induces collinear bremsstrhalung

P+K

K

P
~gT

• The probability of a transverse kick of momentum q⊥ from soft fields:

CLO[q⊥] =
Tm2

D

q2⊥(q2⊥ +m2
D)

NLO involves corrections to these processes and the relation between them.

Same processes determine the shear viscosity of QCD in high temperature plasma!



Three rates for energy loss at leading order:

1. Hard Collisions – a 2↔ 2 processes

Q~T

P ~ E

[∂t + vk · ∂x] fk = C2↔2[µ⊥]

Total 2↔ 2 scattering rate depends logarithmically on the cutoff



2. Drag: A longitudinal force-force correlator along the light cone

where

U(a+, b+; c�) = P exp

 
ig

Z a+

b+
dl+A�(l+, c�)

!
, (25)

Ũ(a�, b�; c+) = P exp

 
ig

Z a�

b�
dl�A+(l�, c+)

!
. (26)

This particular ordering corresponds to having the upper three connected Wilson lines on the
anti-time ordered branch of the Schwinger-Keldysh contour and the lower three on the time-
ordered one. The “handle” on the bottom right corner can be trivially annihilated, but the
same is not true for the one at the bottom left, since time-like separated fields appear between
the two vertical Wilson lines there. Hence, once (q+)2 is replaced by derivatives which, when
acting on the Wilson loop, introduce the F+� electric fields, and once the q+ integration is
taken (with infinite cuto↵), squeezing the Wilson loop to the form of Eq. (22), the “handle” will
survive there. However it is not relevant in non-singular gauges and even in the light-cone gauge
A� = 0 it can be neglected at LO and NLO. The same would not be true for energy loss, where
one has a single F+� insertion (at x+) and the handle is critical in obtaining a gauge-invariant
leading-order result. ]]

Now, as observed in [5], we can write F+� as F+� = @+A�� [D�, A+] and use the equation
of motion of the Wilson line, D�U(x+) = 0, so that

U(a, x+)[D�, A+(x+)]U(x+, b) = d�
�
U(a, x+) A+(x+) U(x+, b)

�
, (27) {totald}

i.e. it the commutator acts as a total derivative (d�) and can be discarded, provided that the
boundary term vanishes. This is true in all gauges where the A+ field vanishes at large x+, such
as the Coulomb or covariant gauge. The singular light-cone gauge A� = 0 would obviously not
satisfy this.

Using translation invariance and shifting the integration by �x+ the same trick can be applied
to the other field strength insertion, so that in the end in Coulomb or covariant gauge we need
to worry only about

q̂L =
g2TR

dR

Z +1

�1
dx+Tr

⌦
U(�1, x+)@+A�(x+)U(x+, 0)@+A�(0)U(0,�1)

↵
. (28) {defqlongsimon}

Finally, let us remark that at LO and NLO operator ordering is not relevant in the soft sector in
this case. At LO we simply contract the two A� fields, obtaining a forward Wightman correlator,
i.e. the diagram shown in Fig. 2, which reads

Figure 2: The leading-order soft contribution. The double line is the adjoint Wilson line, the
black dots are the @+A� vertices. The curly line is a soft HTL gluon. {fig_lo_soft}

q̂L

����
LO soft

= g2CR

Z +1

�1
dx+

Z
d4P

(2⇡)4
e�ip�x+

(p+)2G��>(P ), (29) {lo}
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Fz+
Fz+

P ~gT

[∂t + vk · ∂x] fk = η(µ)v · ∂fk
∂k

• Evaluate longitudinal force-force with hard thermal loops + sum-rules

η(µ) ∝ g2CA
∫ µ d2pT

(2π)2

∫
dp+dp0
(2π)4

〈Fz+(P )Fz+〉 2πδ(p+)︸ ︷︷ ︸
evaluate with sum-rule p0 →∞

∝ g2CA
∫ µ d2pT

(2π)2
m2
∞

p2T +m2∞

∝ g2CA
m2
∞

4π
log(µ2/m2

∞)

The µ−dependence of the drag cancels against µ-dependence of the 2→ 2 rate



3. Collinear Bremsstrhalung – a 1↔ 2 processes

P+K
K

P~gT
[∂t + vk · ∂x] fk = C1↔2︸ ︷︷ ︸

LPM + AMY and all that stuff!

The bremsstrhalung rate is proportional to the rate of transverse momentum kicks, CLO[q⊥]:

CLO[q⊥] = in medium scattering rate with momentum q⊥

• Need to compute transverse force-force correlators along the light cone.

q2⊥CLO[q⊥] =

∫
dq+dq0
(2π)2

〈Fi+(Q)Fi+〉 2πδ(q+)︸ ︷︷ ︸
evaluate with sum rule at q0 = 0

=
Tm2

D

q2⊥ +m2
D



Summary – the full LO Boltzmann equation:

[∂t + vk · ∂x] fk = η(µ)vk ·
∂fk
∂k

+ C2↔2[µ] + C1↔2

The cutoff dependence of the drag cancels against the 2→ 2 rate!



O(g) Corrections to Hard Collisions, Drag, Bremm:

1. No corrections to Hard Collisions:

2. Corrections to Drag:

Fz+Fz+

P

The p� integration can be closed below, yielding

q̂L

����
(1)

+

= �ig4CRCAT 2

Z

CR

dp+d2p?
(2⇡)3

Z
d4Q

(2⇡)4

✓
i

�Ep(q� � i✏)(q� + �Ep � i✏)

◆
⇢��

rr (Q)

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

The q� integration can be closed in the upper half-plane, giving

q̂L

����
(1)

+

= g4CRCAT 2

Z

CR

d4P

(2⇡)4

Z
dq+d2q?

(2⇡)3


i

�E2
p

G��
R (q� = 0) � i

�E2
p

G��
R (q� = ��Ep)

�

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

This vanishes on the CR, because the square bracket is at least linear in �Ep.
The second and third term are identical to Eq. (59) and thus vanish. Only the last term

contributes, yielding

q̂L

����
+

= �g4CRCA

Z
d4P

(2⇡)4

Z
d4Q

(2⇡)4
2⇡�(p� + q�)

4
G��

rr (P )G��
rr (Q), (66) {crossfinal}

which cancels Eq. (62).

A.3 The cat eye

P

Q

P + Q

Figure 5: The cat-eye diagram {fig_cateye}

The amplitude reads, with label c (GUY METRIC)

q̂L

����
c

= g4CRCA

Z +1

�1
dx+

Z x+

0

dx+0
Z

d4P

(2⇡)4

Z
d4Q

(2⇡)4
e�ip�x+

e�iq�x+0
�µ⌫⇢(�P,�Q, P + Q)

⇥p+(p+ + q+)


G�⇢

A (P + Q)G�⌫
rr (Q)G�µ

rr (P ) + G�⇢
rr (P + Q)G�⌫

R (Q)G�µ
rr (P )

+G�⇢
rr (P + Q)G�⌫

rr (Q)G�µ
R (P )

�
, (67)

where I have defined the three-gluon vertex as

gfabc�µ⌫⇢(P, Q, K) ⌘ �gfabc [gµ⌫(P � Q)⇢ + g⌫⇢(Q � K)µ + g⇢µ(K � P )⌫ ] , (68) {threegluon}
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~gT

~gT

• Nonlinear interactions of soft classical fields changes the force-force correlator

• Doable because of HTL sum rules (light cone causality) Simon Caron-Huot



3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

Q = (q+, q−, q⊥) = (gT, g2T, gT )

θ ∼ mD/E

CLO[q⊥] =
Tg2m2

D

q2⊥(q2⊥ +m2
D)
→ A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q− ∼ gT .

Q = (q+, q−, q⊥) = (gT, gT, gT )

θ ∼
√

mD/E

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss



The NLO Boltzmann equation – a preview:The NLO Boltzmann equation – a preivew:

[@t + vk · @x] fk = (⌘(µ) + �⌘(µ)) vk · @fk

@k
+ C2$2[µ]

C1$2 + �C1$2 + Csemi�coll[µ]

The cutoff dependence of the drag at NLO cancels against the 2 ! 2 rate!

Cutoff dependence cancels 

The µ-dependence of the drag at NLO cancels the µ-dependence of

semi-collinear radiation



Semi-collinear radiation – a new kinematic window

2 → 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

• When the gluon is hard the 2↔ 2 collision:

is physically distinct from the wide angle brem



Matching collisions to brem

• When the gluon becomes soft (a plasmon), the 2↔ 2 collision:

θ ∼ √
g

is not physically distinct from the wide angle brem

θ ∼ √
g

q− ∼ gT

Need both processes

– For harder gluons, q− → T , this becomes a normal 2→ 2 process.

– For softer gluons, q− → g2T , this smoothly matches onto AMY.



Brem and collisions at wider angles (but still small!)

• Semi-collinear emission:

pout ≡ z pinpin

q−=δE=∆p−∼ gT

• The matrix element is:

|M|2 (2π)4δ4(Ptot) ∝ 1 + z2

z︸ ︷︷ ︸
QCD splitting fcn

∫
Q

1

(q−)2
〈Fi+(Q)Fi+〉︸ ︷︷ ︸
scattering-center

2πδ(q− − δE)

All of the dynamics of the scattering center in a single matrix element 〈Fi+(Q)Fi+〉



The scattering center:

C[q⊥, δE] =

∫

Q

1

(q−)2
〈Fi+(Q)Fi+〉 2πδ(q− − δE)

1. Soft-correlator has wide angle brem = cut

2. And plasmon scattering = poles

 0
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Figure 5.11: A sample integrand of Eq. (5.97) with �E = 0.5 and p02? = 0.7.
The continuous part corresponds to the cut contribution and the two peaks to
the longitudinal and transverse poles.

In wide-angle bremsstrahlung (and plasmon collisions), we started with
p? ⇠ p

gT . When this transverse momentum becomes soft gT ⌧ p? ⌧ p
gT ,

this process reduces to the LO collinear bremsstrahlung. At wide angle, the
LPM e↵ect can be neglected since the formation time is short. By taking the
limit p? ! 0, �E = p0� ! 0 and the matrix elements become

h
|M |2L⇢L + |M |2T⇢T

i����
p00=p0z+�E

! 16e2
X

s

q2
sdF CF g2 1 + z2

z

p02?
2(�E)2

�
⇢L + ⇢T sin2 ✓

�
. (5.98)

Here ⇢L + ⇢T sin2 ✓ = ⇢µ⌫vµv⌫ is same as the LO result in Eq. (5.23) (see
also Eq. (5.163) in Appendix A). In order to obtain the NLO correction, we
subtract the LO bremsstrahlung contribution which is given by

16e2
X

s

q2
sdF CF g2

Z 1

k

dpz

2⇡

Z 1

0

dp2
?

2(2⇡)

Z 1

0

dp02?
2(2⇡)

1

2p2k02k
nF

p (1 � nF
k0)

1 + z2

z

Z 1

�1

dp0z

2⇡

T

p00
p02?

2(�E)2
(⇢L + ⇢T sin2 ✓)

����
p00=p0z

. (5.99)
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Finite energy transfer sum-rule

θ ∼ √
g

q− ∼ gT

• The AMY collision kernel C[q⊥] involves Aurenche, Gelis, Zakarat

q2⊥C[q⊥] =

∫ ∞

−∞

dq0
2π
〈Fi+Fi+(Q)〉|q+=0 =

Tm2
D

q2T +m2
D︸ ︷︷ ︸

Rate of transverse kicks of q⊥

• We need a finite q− = δE generalization:

∫ ∞

−∞

dq0
2π
〈Fi+Fi+(Q)〉|q+=−δE = T

[
2(δE)2(δE2 + q2⊥ +m2

D) +m2
Dq

2
⊥

(δE2 + q2⊥ +m2
D)(δE2 + q2⊥)

]

︸ ︷︷ ︸
Rate of transverse kicks of q⊥ and energy transfer δE

almost involves the replacement, q2⊥ → q2⊥ + δE2



Matching between brem and drag

semi-collinear radiation

collinear radiation

2 → 2 processes

What happens when the

final gluon is soft?

• The semi-collinear emission rate diverges logarithmically when the gluon gets soft

Γsemi−coll ∼ g2CA

∼ g3T 2

︷ ︸︸ ︷
δm2
∞

4π
log

(
2TmD

µ

)

When the gluon becomes soft need to relate radiation and drag.



Matching between semi-collinear brem and drag

• When the final gluon line is hard, the brem process:

is physically distinct from the drag process:



Matching between semi-collinear brem and drag

• When the final gluon line becomes soft, the brem process:

P K ≃ P

µ ∼ zP

is not physically distinct from the drag process:

P K ≃ P

Q ∼ gT

but represents a higher order correction to drag.

Separately both processes depend on the separation scale, µ ∼ gT , but . . .

the µ dep. cancels when both rates are included



Computing the NLO drag:

The final result, with the linear divergence dropped, is

q̂L

����
ct

semi�coll

= �g4CRCAT 2mD(1 ± n(p))

8⇡2
ln

2mDT
�
µNLO
?

�2 , (51)

which matches the UV-log divergence in the soft region.

A Longitudinal momentum di↵usion at NLO

some intro here

A.1 The rainbow diagram

P

Q

Figure 3: The rainbow diagram {fig_rainbow}

It reads (label h)

q̂L

����
h

= �g4CR

Z +1

�1
dx+

Z x+

0

dx+0
Z x+0

0

dx+00
Z

d4P

(2⇡)4

Z
d4Q

(2⇡)4

⇥e�ip�x+

e�iq�(x+0�x+00)(p+)2G��
rr (P )G��

rr (Q), (52) {defhardself}

where the ordering of the two propagator is not really relevant, what matters is that they all
receive a Bose enhancement. The Wilson line integrations yield

q̂L

����
h

= g4CRCA

Z
d4P

(2⇡)4

Z
d4Q

(2⇡)4

✓
i

(p� + i✏)2(p� + q� + i✏)
� adv

◆
(p+)2G��

rr (P )G��
rr (Q).

(53) {hardselfmom2}
We set out to perform the p+ in the complex plane. The (p+)2 at the numerator will give rise to
contribution from the arcs at large |p+| but, contrary to the leading-order case, p� is not fixed
to be zero, so there are poles at p+ = �p�/2 from the statistical factor. We can either do some
numerator algebra to separate the arc contribution from the Euclidean contribution or we can
use (p0, p�) coordinates rather than (p+, p�) ones. We go with the first option and write

T (p+)2

p+ + p�/2
= Tp+ � Tp�

2
+

T (p�)2

4(p+ + p�/2)
. (54)

The first term yields the contour deformation, the second will vanishes as we shall show (no poles
and no contour contributions) and the third can be dealt with using Euclidean technology.

We start with the first one, additional label a for arc. We deform p+ away from the real axis,
calling CR and CA the contours in the upper and lower half-planes respectively. The retarded

13

The p� integration can be closed below, yielding

q̂L

����
(1)

+

= �ig4CRCAT 2

Z

CR

dp+d2p?
(2⇡)3

Z
d4Q

(2⇡)4

✓
i

�Ep(q� � i✏)(q� + �Ep � i✏)

◆
⇢��

rr (Q)

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

The q� integration can be closed in the upper half-plane, giving

q̂L

����
(1)

+

= g4CRCAT 2

Z

CR

d4P

(2⇡)4

Z
dq+d2q?

(2⇡)3


i

�E2
p

G��
R (q� = 0) � i

�E2
p

G��
R (q� = ��Ep)

�

⇥ i

(p+)2

✓
1 +

p�

p+

◆
p2
?

2p+
+ CA .

This vanishes on the CR, because the square bracket is at least linear in �Ep.
The second and third term are identical to Eq. (59) and thus vanish. Only the last term

contributes, yielding

q̂L

����
+

= �g4CRCA

Z
d4P

(2⇡)4

Z
d4Q

(2⇡)4
2⇡�(p� + q�)

4
G��

rr (P )G��
rr (Q), (66) {crossfinal}

which cancels Eq. (62).

A.3 The cat eye

P

Q

P + Q

Figure 5: The cat-eye diagram {fig_cateye}

The amplitude reads, with label c (GUY METRIC)

q̂L

����
c

= g4CRCA

Z +1

�1
dx+

Z x+

0

dx+0
Z

d4P

(2⇡)4

Z
d4Q

(2⇡)4
e�ip�x+

e�iq�x+0
�µ⌫⇢(�P,�Q, P + Q)

⇥p+(p+ + q+)


G�⇢

A (P + Q)G�⌫
rr (Q)G�µ

rr (P ) + G�⇢
rr (P + Q)G�⌫

R (Q)G�µ
rr (P )

+G�⇢
rr (P + Q)G�⌫

rr (Q)G�µ
R (P )

�
, (67)

where I have defined the three-gluon vertex as

gfabc�µ⌫⇢(P, Q, K) ⌘ �gfabc [gµ⌫(P � Q)⇢ + g⌫⇢(Q � K)µ + g⇢µ(K � P )⌫ ] , (68) {threegluon}
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+ + …..
• Evaluate NLO longitudinal force-force with hard thermal loops + sum-rules

• Only change relative to LO is the replacement m2
∞ → m2

∞ + δm2
∞

η(µ) ∝ g2CA
∫ µ d2pT

(2π)2
m2
∞ + δm2

∞
p2T +m2∞ + δm2∞

∝ leading order + g2CA
δm2
∞

4π

[
log

(
µ2⊥
m2∞

)
− 1

]

︸ ︷︷ ︸
NLO correction to drag

The cutoff dependence of the drag cancels against the semi-collinear emission rate



The NLO Boltzmann equation review:The NLO Boltzmann equation – a preivew:

[@t + vk · @x] fk = (⌘(µ) + �⌘(µ)) vk · @fk

@k
+ C2$2[µ]

C1$2 + �C1$2 + Csemi�coll[µ]

The cutoff dependence of the drag at NLO cancels against the 2 ! 2 rate!

Cutoff dependence cancels 

Lessons from weak coupling

• Tight relation between drag, wide angle emissions, quasi-particle mass shift.

– Closely related to dimensional reduction.

• The wide angle emission kernel C[q⊥, δE] is closely related to C[q⊥], almost:

q2
⊥ → q2

⊥ + δE2

– Closely related to dimensional reduction.

• Understand in detail the transition from radiative to collisional loss

Currently being implemented into MARTINI





Hot QGP

K

2k(2π)3
dΓ

d3k
= Photon emission rate per phase-space

Same techniques can be used for thermal photon production:

• The rate is function of the coupling coupling constant and k/T :

2k(2π)3
dΓ

d3k
∝ e2T 2

[
O(g2 log) +O(g2)︸ ︷︷ ︸

LO AMY

+

O(g3 log) +O(g3)︸ ︷︷ ︸
From soft gT gluons, nB ' T

ω ' 1
g

+ . . .

O(g3) is closely related to open issues in energy loss:



Three rates for photon production at Leading Order

1. Hard Collisions – a 2↔ 2 processes

K

Q~T

2. Collinear Bremsstrhalung – a 1↔ 2 processes

P+K
K

P
~gT



3. Quark Conversions – 1↔ 1 processes (analogous to drag)

K K

~gT or

K

~gT

K

NLO involves corrections to these three processes.

Full rate is independent of scale µ⊥.



NLO Results: ΓNLO ∼ LO + g3 log(1/g) + g3
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Figure 19. The functions C(k/T ) for Nc = 3, Nf = 3 as in Fig. 18, but for ↵s = 0.05. {plot_c_5_1}
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Figure 20. Left: the di↵erential rate d��/dk relative to the leading order rate as a function of k/T

(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the

leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).

The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is

included, with the analogous notation for the LO + soft+sc curve. The di↵erence between the

dashed curves provides a uncertainty estimate for the NLO calculation. Right: the same as on the

left but for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.

– 38 –

NLO corrections are modest and roughly k independent



The different contributions at NLO (conversions are not numerically important)

large-θ radiation suppressed at NLO

small-θ radiation enhanced at NLO
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Conclusion:

• The size of NLO corrections is much larger for heavy quarks than light quarks

• NLO corrections to collinear processes seem to be modest.

• All of the soft sector buried into a few coefficients, C[q⊥, δE], q̂cnvrt, δm
2
∞

– Can we compute these non-perturbatively with dimensional reduction?

– Use these non-perturbative parameters to compute η/s

Can imagine computing all of energy loss perturbatively rather precisely for

T ∼ 800 MeV!

Let’s get to it!




