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Outline: Energy loss and transport in weakly coupled plasmas at “NLO”

1. Philosophy of weakly coupled calculations — there is only one right answer . ..
(a) Collisional vs. radiative loss
(b) Corrections to collinear formalism

(c) Relation between drag (or €) and radiative loss
2. Heavy Quark Drag (difoSiOn): S. Caron-Huot and G. Moore, JHEP

3. Energy loss of ||ght quarkS and gluonS Jacopo Ghiglieri, H. Gervais, G. Moore, DT, in progress

4. Thermal phO'[OI’]S Jacopo Ghiglieri, J. Hong, A. Kurkela, G. Moore, DT, JHEP



Perturbation theory can work — from Borsanyi Quark Matter Talk

e HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD - the Finish Group
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Want to compute e-loss and viscosity to similar precision at high T!



Heavy Quark Drag at “NLO”



Computing Heavy Quark Diffusion at NLO

e Write down an equation of motion for the heavy quarks.
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e The drag and the random force are related
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All parameters are related to the heavy quark diffusion coefficient or



Giving the diffusion coefficient a rigorous definition

e Compare the Langevin process to the microscopic theory

Langevin Microscopic Theory
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e Match the Langevin to the Microscopic Theory

Langevin Microscopic Theory
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Momentum Diffusion Coefficient < Electric Field Correlator



Force-force correlators beyond leading order (Guy D. Moore and Simon-Caron Huot)
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(Guy D. Moore and Simon Carot-Huot)
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Perturbation theory is a disaster for kinetics even for T' = M .
Why?
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Light quark and gluon e-loss at “NLO”



Three mechanisms for energy loss at LO

Hard Collisions: 2 < 2

1.

2. Drag: collisions with soft random classical field




3. Brem: 1 < 2

e random walk induces collinear bremsstrhalung

e The probability of a transverse kick of momentum q | from soft fields:
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NLO involves corrections to these processes and the relation between them.
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Same processes determine the shear viscosity of QCD in high temperature plasma!



Three rates for energy loss at leading order:

1. Hard Collisions —a 2 <+ 2 processes
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Total 2 <+ 2 scattering rate depends logarithmically on the cutoff



2. Drag: A longitudinal force-force correlator along the light cone
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e Evaluate longitudinal force-force with hard thermal loops + sum-rules
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The ©—dependence of the drag cancels against pi-dependence of the 2 — 2 rate



3. Collinear Bremsstrhalung —a 1 <+ 2 processes

0y + vk - 02| fx = Cleo
N——
LPM + AMY and all that stuff!

The bremsstrhalung rate is proportional to the rate of transverse momentum kicks, C'1,o [qL]:
C'rolq1] = in medium scattering rate with momentum q |

e Need to compute transverse force-force correlators along the light cone.
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evaluate with sum rule at gy = 0
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Summary — the full LO Boltzmann equation:

0
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The cutoff dependence of the drag cancels against the 2 — 2 rate!



O(g) Corrections to Hard Collisions, Drag, Bremm:
1. No corrections to Hard Collisions:

2. Corrections to Drag:

e Nonlinear interactions of soft classical fields changes the force-force correlator

e Doable because of HTL sum rules (light cone causality) Simon Caron-Huot



3. Corrections to Bremm:

(@) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)
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(b) Large angle brem and collisions with plasmons.

CrolqL] = > A complicated but analytic formula

e Include collisions with energy exchange, ¢— ~ g1

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss




The NLO Boltzmann equation — a preview:

Cutoff dependence cancels
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The u-dependence of the drag at NLO cancels the p-dependence of
semi-collinear radiation



Semi-collinear radiation — a new kinematic window

2 — 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

e When the gluon is hard the 2 <+ 2 collision:




Matching collisions to brem

e When the gluon becomes soft (a plasmon), the 2 <+ 2 collision:

Need both processes

— For harder gluons, ¢g— — I, this becomes a normal 2 — 2 process.

— For softer gluons, ¢g= — gQT, this smoothly matches onto AMY.



Brem and collisions at wider angles (but still small!)

e Semi-collinear emission:

Pout = < Pin

® The matrix element is:
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All of the dynamics of the scattering center in a single matrix element (F; (Q)Fj+)



The scattering center:

Cla.,dE) = /Q ﬁ

1. Soft-correlator has wide angle brem = cut
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2. And plasmon scattering = poles
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Finite energy transfer sum-rule

e The AMY collision kernel C'|q | involves Aurenche, Gelis, Zakarat
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Rate of transverse kicks of g |

e We need a finite ¢~ = 0 F' generalization:
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almost involves the replacement, qi —> qi + §E?



Matching between brem and drag

2 — 2 processes

semi-collinear radiation

collinear radiation
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What happens when the

final gluon is soft?

e The semi-collinear emission rate diverges logarithmically when the gluon gets soft
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When the gluon becomes soft need to relate radiation and drag.



Matching between semi-collinear brem and drag

e When the final gluon line is hard, the brem process:




Matching between semi-collinear brem and drag

e \When the final gluon line becomes soft, the brem process:
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but represents a higher order correction to drag.

Separately both processes depend on the separation scale, i ~ g1, but . . .

the 1 dep. cancels when both rates are included



Computing the NLO drag:

Foy+ § &Y+

e Evaluate NLO longitudinal force-force with hard thermal loops + sum-rules

e Only change relative to LO is the replacement mgo — mgo + 5777%0
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NLO correction to drag

The cutoff dependence of the drag cancels against the semi-collinear emission rate



The NLO Boltzmann equation review:

Cutoff dependence cancels
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Lessons from weak coupling

e Tight relation between drag, wide angle emissions, quasi-particle mass shift.

— Closely related to dimensional reduction.
e The wide angle emission kernel C'|q ,  E] is closely related to C'|q | |, almost:
qt = qf +JE”°
— Closely related to dimensional reduction.

e Understand in detail the transition from radiative to collisional loss

Currently being implemented into MARTINI
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HOt QGP 2k(2ﬂ)3@ = Photon emission rate per phase-space
Same techniques can be used for thermal photon production:

e The rate is function of the coupling coupling constant and k/T:
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From soft g'I" gluons, np =~ % ~ é

O(g?) is closely related to open issues in energy loss:



Three rates for photon production at Leading Order

1. Hard Collisions —a 2 <+ 2 processes

P+K




3. Quark Conversions — 1 <+ 1 processes (analogous to drag)
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— ~gT

~g T or
J< NN/ -

NLO involves corrections to these three processes.

Full rate is independent of scale 1 .



NLO Results: Dy o ~ LO + ¢®log(1/g) + ¢°
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NLO corrections are modest and roughly k independent



The different contributions at NLO (conversions are not numerically important)
large-6 radiation suppressed at NLO

small-0 radiation enhanced at NLO
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Conclusion:
e The size of NLO corrections is much larger for heavy quarks than light quarks
e NLO corrections to collinear processes seem to be modest.

e All of the soft sector buried into a few coefficients, C'|q |, 0 E|, Genvrt . 5mgo
— Can we compute these non-perturbatively with dimensional reduction?

— Use these non-perturbative parameters to compute 7 / S

Can imagine computing all of energy loss perturbatively rather precisely for
T ~ 800 MeV!

Let’s get to it!





