Perturbative Contributions to Rare \boldsymbol{B}-meson Decays

Mikołaj Misiak

(University of Warsaw)

1. $\boldsymbol{B}_{s(d)} \rightarrow \ell^{+} \ell^{-}$
a. Sensitivity to BSM physics
b. Electroweak-scale matching at 3 loops in QCD and 2 loops in EW interactions
C. Updated SM prediction

2. $\bar{B} \rightarrow X_{s} \gamma$ at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

a. Knowns and unknowns
b. $Q_{1,2}-Q_{7}$ interference at $m_{c}=0$
C. Expectations for the upcoming SM prediction update

3. Summary

$B_{s} \rightarrow \mu^{+} \mu^{-}-$the flavour physics highlight of the LHC

- It is a strongly suppressed, loop-generated process in the SM. Its average time-integrated branching ratio (with final-state photon bremsstrahlung included) reads:

$$
\overline{\mathcal{B}}_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth, M. Gorbahn, T. Hermann,
MM, E. Stamou and M. Steinhauser,
Phys. Rev. Lett. 112 (2014) 101801]

- It is very sensitive to new physics even in models with Minimal Flavour Violation (MFV). Enhancements by orders of magnitude are possible even when constraints from all the other measurements are taken into account.
- Recently measured branching ratios

$$
\overline{\mathcal{B}}_{\text {exp }}=\left\{\begin{array}{lll}
\left(2.9_{-1.0}^{+1.1}\right) \times 10^{-9}, & \text { LHCb } & \text { [Phys. Rev. Lett. } 111(2013) 101805] \\
\left(3.0_{-0.9}^{+1.0}\right) \times 10^{-9}, & \text { CMS } \quad[\text { [Phys. Rev. Lett. } 111 \text { (2013) 101804] }
\end{array}\right.
$$

Combined: $\quad \overline{\mathcal{B}}_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9} \quad \begin{gathered}{[\text { F. Archilli, talk at CKM2014, }} \\ \text { September 10th, 2014] }\end{gathered}$

- ATLAS: $\quad \overline{\mathcal{B}}_{\text {exp }}<1.5 \times 10^{-8} @ 95 \%$ C.L.
B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_{W}$. We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_{W}$.
$\mathcal{L}_{\text {(full EW } \times \mathrm{QCD})} \longrightarrow \mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {QED } \times \mathrm{QCD}}\binom{$ quarks $\neq t}{8$ leptons }$+N \sum_{n} C_{n}(\mu) Q_{n}$
Q_{n} - local interaction terms (operators), $\quad \boldsymbol{C}_{\boldsymbol{n}}$ - coupling constants (Wilson coefficients)

B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_{W}$.

We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_{W}$.

$\boldsymbol{Q}_{\boldsymbol{n}}$ - local interaction terms (operators), $\quad \boldsymbol{C}_{\boldsymbol{n}}$ - coupling constants (Wilson coefficients)
Information on the electroweak-scale physics is encoded in the values of $C_{i}(\mu)$, e.g.,

This is a modern version of the Fermi theory for weak interactions. It is "nonrenormalizable" in the traditional sense but actually renormalizable. It is also predictive because all the C_{i} are calculable, and only a finite number of them is necessary at each given order in the (external momenta) $/ M_{W}$ expansion.

Advantages: Resummation of $\left(\alpha_{s} \ln \frac{M_{W}^{2}}{\mu^{2}}\right)^{n}$ using renormalization group, easier account for symmetries.

Operators (dim 6) that matter for $B_{s} \rightarrow \mu^{+} \mu^{-}$read
$Q_{A}=\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \quad$ - the only relevant one in the SM
$Q_{S(P)}=\left(\bar{b} \gamma_{5} s\right)\left(\bar{\mu}\left(\gamma_{5}\right) \mu\right)=\frac{i\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right) \partial_{\alpha}\left(\bar{\mu}\left(\gamma_{5}\right) \mu\right)}{m_{b}+m_{s}}$

Operators (dim 6) that matter for $B_{s} \rightarrow \mu^{+} \mu^{-}$read

$Q_{A}=\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right)$ - the only relevant one in the SM
$Q_{S(P)}=\left(\bar{b} \gamma_{5} s\right)\left(\bar{\mu}\left(\gamma_{5}\right) \mu\right)=\frac{i\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right) \partial_{\alpha}\left(\bar{\mu}\left(\gamma_{5}\right) \mu\right)}{m_{b}+m_{s}}$

Necessary non-perturbative input:

$$
\langle 0| \bar{b} \gamma^{\alpha} \gamma_{5} s\left|B_{s}(p)\right\rangle=i p^{\alpha} f_{B_{s}}
$$

Recent lattice determinations of the B_{s}-meson decay constant:

$$
f_{B_{s}}=\left\{\begin{array}{lll}
225.0(4.0) \mathrm{MeV}, & \text { HPQCD (r), } & \text { arXiv:1110.4510 } \\
224.0(5.0) \mathrm{MeV}, & \text { HPQCD (nr), } & \text { arXiv: } 11302.2644 \\
234.0(6.0) \mathrm{MeV}, & \text { ROME, } & \text { arXiv:1212.0301 } \\
242.0(9.5) \mathrm{MeV}, & \text { FNAL/MILC, } & \text { arXiv:1112.3051 } \\
232.0(10) \mathrm{MeV}, & \text { ETM, } & \text { arXiv:1107.1441 } \\
219.0(12) \mathrm{MeV}, & \text { ALPHA, } & \text { arXiv:1210.6524 } \\
235.4(12) \mathrm{MeV}, & \text { RBC/UKQCD, } & \text { arXiv:1404.4670 } \\
224.0(14) \mathrm{MeV}, & \text { ALPHA, } & \text { arXiv:1404.3590 }
\end{array}\right.
$$

Flavour Lattice Averaging Group (FLAG), arXiv:1310.8555 gives

$$
f_{B_{s}}=227.7(4.5) \mathrm{MeV}
$$

Average time-integrated branching ratio:
$\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)=\frac{|N|^{2} M_{B_{s}}^{3} f_{B_{s}}^{2}}{8 \pi \Gamma_{H}^{s}} \boldsymbol{\beta}\left(\left|r C_{A}-u C_{P}\right|^{2} F_{P}+\left|u \beta C_{S}\right|^{2} F_{S}\right)+\mathcal{O}\left(\alpha_{e m}\right)$,
where $\quad N=\frac{V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2}}{\pi^{2}}, \quad r=\frac{2 m_{\mu}}{M_{B_{s}}}, \quad \beta=\sqrt{1-r^{2}}, \quad u=\frac{M_{B_{s}}}{m_{b}+m_{s}}$,
$F_{P}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \sin ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg \left(r C_{A}-u C_{P}\right)\right] \xrightarrow{\mathrm{SMCP}} 1$,
$F_{S}=1-\frac{\Delta \Gamma^{s}}{\Gamma^{s}} \cos ^{2}\left[\underline{1} \phi^{\mathrm{NP}}+\arg C_{S}\right] \quad \xrightarrow{\text { SM CP }} \quad \xrightarrow[H]{\Gamma_{H}^{s}} \quad$ derived following [K. de Bruyn et al., Phys. Rev. Lett. 109 (2012) 041801]

Average time-integrated branching ratio:
$\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)=\frac{|N|^{2} M_{B_{s}}^{3} f_{B_{s}}^{2}}{8 \pi \Gamma_{H}^{s}} \boldsymbol{\beta}\left(\left|r C_{A}-u C_{P}\right|^{2} F_{P}+\left|u \beta C_{S}\right|^{2} F_{S}\right)+\mathcal{O}\left(\alpha_{e m}\right)$,
where $\quad N=\frac{V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2}}{\pi^{2}}, \quad r=\frac{2 m_{\mu}}{M_{B_{s}}}, \quad \beta=\sqrt{1-r^{2}}, \quad u=\frac{M_{B_{s}}}{m_{b}+m_{s}}$,
$F_{P}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \sin ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg \left(r C_{A}-u C_{P}\right)\right] \xrightarrow{\text { SM CP }} 1$,
$F_{S}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \cos ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg C_{S}\right] \xrightarrow{\text { SM CP }} \frac{\Gamma_{H}^{s}}{\Gamma_{L}^{s}} \quad \begin{aligned} & \text { derived following [K. de Bruyn et al., } \\ & \text { Phys. Rev. Lett. } 109 \text { (2012) 041801] }\end{aligned}$
In the limit of no CP-violation, mass eigenstates are CP eigenstates:
Heavier, CP-odd: $\boldsymbol{B}_{s}^{H}=\frac{1}{\sqrt{2}}\left(\boldsymbol{B}_{s}+\overline{\boldsymbol{B}}_{s}\right)$, annihilated by $\bar{b} \gamma_{5} s+\bar{s} \gamma_{5} b, \quad\left(\tau_{H}=1.615(21) \mathrm{ps}\right)$
Lighter, CP-even: $B_{s}^{L}=\frac{1}{\sqrt{2}}\left(B_{s}-\bar{B}_{s}\right)$, annihilated by $\bar{b} \gamma_{5} s-\bar{s} \gamma_{5} b, \quad\left(\tau_{L}=1.516(11) \mathrm{ps}\right)$
Our interactions in this limit are all CP-even:
$Q_{A}+Q_{A}^{\dagger}=\left[\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)+\left(\bar{s} \gamma^{\alpha} \gamma_{5} b\right)\right]\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right)$
$Q_{P}+Q_{P}^{\dagger}=\left[\left(\bar{b} \gamma_{5} s\right)+\left(\bar{s} \gamma_{5} b\right)\right]\left(\bar{\mu} \gamma_{5} \mu\right)$
$\left.\boldsymbol{Q}_{S}+\boldsymbol{Q}_{S}^{\dagger}=\left[\left(\overline{\boldsymbol{b}} \gamma_{5} s\right)-\left(\bar{s} \gamma_{5} b\right)\right](\bar{\mu} \mu) \quad\right\}$ annihilates B_{s}^{L}, produces CP-even dimuons
With SM-like CP-violation - still $Q_{A, P}$ annihilate B_{s}^{H} and Q_{S} annihilates B_{s}^{L}.
Beyond SM - interesting time-dependent observables, see arXiv:1303.3820, 1407.2771.

Evaluation of the LO Wilson coefficients in the SM:

$C_{A}^{(0)}=\frac{1}{2} Y_{0}\left(m_{t}^{2} / M_{W}^{2}\right)$,
$Y_{0}(x)=\frac{3 x^{2}}{8(x-1)^{2}} \ln x+\frac{x^{2}-4 x}{8(x-1)}$,
$C_{S, P}=\mathcal{O}\left(\frac{m_{\mu}}{M_{W}}\right)$.
Effects of $C_{S, P}$ on the branching ratio are suppressed by $M_{B_{s}}^{2} / M_{W}^{2} \quad \Rightarrow$ negligible.
Thus, only C_{A} matters in the SM.

Evaluation of the Wilson coefficients beyond the SM.

 Example 1: the Two-Higgs-Doublet Model II

$$
\tan \beta=v_{2} / v_{1}, \quad z=M_{H^{ \pm}}^{2} / m_{t}^{2}
$$

$$
C_{S} \simeq C_{P} \simeq \frac{m_{\mu} m_{b} \tan ^{2} \beta}{4 M_{W}^{2}} \frac{\ln z}{z-1}>0
$$

H.E. Logan and U. Nierste, NPB 586 (2000) 39 $(\mathcal{O}(\tan \beta)$ neglected $)$
$\mathcal{B}\left(B_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right) \simeq$ (const.) $\left[\left|\frac{2 m_{\mu}}{M_{B_{s}}} C_{A}-C_{P}\right|^{2}+\left|C_{S}\right|^{2}\right]$
$C_{A}=\underset{\text { positive }}{C_{\mathrm{S}}^{\mathrm{SM}}}+\underset{\text { small }}{\Delta C_{A}}$
$\Rightarrow\left\{\begin{array}{c}\text { suppression for moderate } C_{S, P} \\ \text { enhancement for huge } \tan \beta \text { only }\end{array}\right.$

$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in the Two-Higgs-Doublet Model II

Evaluation of the Wilson coefficients beyond the SM. Example 2: the MSSM.

For large $\tan \beta$:

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \sim \frac{m_{b}^{2} m_{\mu}^{2}}{M_{A}^{4}} \tan ^{6} \beta
$$

K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84 (2000) 228.

Examples of constraints on the MSSM parameter space:

Figs. 1 and 7 from arXiv:1312.5426 by John Ellis.

purple lines - ATLAS 95\%CL bounds from $\mathbb{E}_{T}+$ jets
green shaded - excluded by $b \rightarrow s \gamma$
brown shaded - charged LSP
pink shaded - SUSY helps with $g-2$
blue strips - favoured by $\Omega_{\text {DM }}$

Evaluation of the NNLO QCD matching corrections in the SM
[T. Hermann, MM, M. Steinhauser, JHEP 1312 (2013) 097]
W-boxes:
(1LPI)
(a)

(b)

(b)

(c)

(c)

Subtleties: (i) counterterms with finite parts $\sim \bar{b}_{L} \not D s_{L}$
(ii) evanescent operators: $E_{B}=\left(\bar{b} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \gamma_{5} \mu\right)-4\left(\bar{b} \gamma_{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\alpha} \gamma_{5} \mu\right)$

$$
\boldsymbol{E}_{\boldsymbol{T}}=\operatorname{Tr}\left(\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\alpha} \gamma_{5}\right)\left(\bar{b} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \boldsymbol{\mu}\right)+24\left(\bar{b} \gamma_{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\alpha} \gamma_{5} \boldsymbol{\mu}\right)
$$

(a)

Renormalization of \boldsymbol{E}_{B}

Diagrams generating \boldsymbol{E}_{T}

Perturbative series for the Wilson coefficient at $\mu=\mu_{0} \sim m_{t}, M_{W}$: $C_{A}\left(\mu_{0}\right)=C_{A}^{(0)}\left(\mu_{0}\right)+\frac{\alpha_{s}}{4 \pi} C_{A}^{(1)}\left(\mu_{0}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{A}^{(2)}\left(\mu_{0}\right)+\frac{\alpha_{e m}}{4 \pi} \Delta_{\mathrm{EW}} C_{A}\left(\mu_{0}\right)+\ldots$

The top quark mass is $\overline{\mathrm{MS}}$-renormalized at μ_{0} with respect to QCD , and on shell with respect to the EW interactions. Both α_{s} and $\alpha_{e m}$ are $\overline{\text { MS-renormalized at } \mu_{0} \text { in the effective theory. }}$

$$
C_{A}^{(n)}=C_{A}^{W,(n)}+C_{A}^{Z,(n)}
$$

To deal with single-scale tadpole integrals, we expand around $y=1$ (solid lines) and around $\boldsymbol{y}=0$ (dashed lines), where $y=M_{W} / m_{t}$. The expansions reach $\left(1-y^{2}\right)^{16}$ and y^{12}, respectively. The blue band indicates the physical region.

Matching scale dependence of $\left|C_{A}\right|^{2}$ gets significantly reduced. The plot corresponds to $\Delta_{\mathrm{EW}} C_{A}\left(\mu_{0}\right)=0$. However, with our conventions for m_{t} and the global normalization, μ_{0}-dependence is due to QCD only.

NNLO fit (with $\Delta_{\mathrm{EW}} C_{A}\left(\mu_{0}\right)=0$):
$C_{A}=0.4802\left(\frac{M_{t}}{173.1}\right)^{1.52}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.09}+\mathcal{O}\left(\alpha_{e m}\right)$

Evaluation of the NLO EW matching corrections in the SM

[C. Bobeth, M. Gorbahn, E. Stamou, Phys. Rev. D 89 (2014) 034023]
Method: similar to the NNLO QCD case. Two-loop integrals with three mass scales are present.
Dependence of the final result on μ_{0} in various renormalization schemes (dotted -LO , solid -NLO):

In all the four plots: no QCD corrections to C_{A} included, $m_{t}\left(m_{t}\right)$ w.r.t. QCD used.
OS-2 scheme: Global normalization factor in $\mathcal{L}_{\mathrm{eff}}$ set to $N=V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2} / \pi^{2}$
Masses at the LO renormalized on-shell w.r.t. EW interactions (including M_{W} in N)
Plotted quantity: $-2 C_{A} G_{F}^{2} M_{W}^{2} / \pi^{2}$ in GeV^{-2}
NLO EW matching correction to the BR: -3.7%
other schemes: Global normalization factor in $\mathcal{L}_{\mathrm{eff}}$ set to $4 V_{t b}^{*} V_{t s} G_{F} / \sqrt{2}$ At the LO, $\alpha_{e m}\left(\mu_{0}\right)$ used

OS-1: Masses as in OS-2, $\sin ^{2} \theta_{W}$ on-shell
HY (hybrid): Masses as in OS-2, $\sin ^{2} \theta_{W}$ as in $\overline{M S}$.

SM predictions for all the branching ratios $\overline{\mathcal{B}}_{q \ell} \equiv \overline{\mathcal{B}}\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)$

[C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, PRL 112 (2014) 101801]

$$
\begin{array}{lll}
\overline{\mathcal{B}}_{s e} \times 10^{14}=(8.54 \pm 0.13) R_{t \alpha} R_{s}=8.54 \pm 0.55, & \\
\overline{\mathcal{B}}_{s \mu} \times 10^{9}=(3.65 \pm 0.06) R_{t \alpha} R_{s}=3.65 \pm 0.23, & \left(\text { LHCb \& CMS : } 2.8_{-0.6}^{+0.7}\right) \\
\overline{\mathcal{B}}_{s \tau} \times 10^{7}=(7.73 \pm 0.12) R_{t \alpha} R_{s}=7.73 \pm 0.49, & \\
\overline{\mathcal{B}}_{d e} \times 10^{15}=(2.48 \pm 0.04) R_{t \alpha} R_{d}=2.48 \pm 0.21, & \\
\overline{\mathcal{B}}_{d \mu} \times 10^{10}=(1.06 \pm 0.02) R_{t \alpha} R_{d}=1.06 \pm 0.09, & \left(\text { LHCb \& CMS : } 3.9_{-1.4}^{+1.6}\right) \\
\overline{\mathcal{B}}_{d \tau} \times 10^{8}=(2.22 \pm 0.04) R_{t \alpha} R_{d}=2.22 \pm 0.19, &
\end{array}
$$

where

$$
\begin{aligned}
R_{t \alpha} & =\left(\frac{M_{t}}{173.1 \mathrm{GeV}}\right)^{3.06}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.18} \\
R_{s} & =\left(\frac{f_{B_{s}}[\mathrm{MeV}]}{227.7}\right)^{2}\left(\frac{\left|V_{c b}\right|}{0.0424}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t s} / V_{c b}\right|}{0.980}\right)^{2} \frac{\tau_{H}^{s}[\mathrm{ps}]}{1.615} \\
R_{d} & =\left(\frac{f_{B_{d}}[\mathrm{MeV}]}{190.5}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t d}\right|}{0.0088}\right)^{2} \frac{\tau_{d}^{\mathrm{av}}[\mathrm{ps}]}{1.519}
\end{aligned}
$$

Sources of uncertainties	$f_{B_{q}}$	CKM	τ_{H}^{q}	M_{t}	α_{s}	other parametric	non- parametric	\sum
$\overline{\mathcal{B}}_{\text {p }}$	4.0%	4.3%	1.3%	1.6%	0.1%	$<0.1 \%$	1.5%	6.4%
$\overline{\mathcal{B}}_{d \ell}$	4.5%	6.9%	0.5%	1.6%	0.1%	$<0.1 \%$	1.5%	8.5%

In the case of $\overline{\mathcal{B}}_{s \ell}$, the main uncertainty (4.2\%) originates from $\left|V_{c b}\right|=0.0424(9)$ that comes from a recent fit to the inclusive semileptonic data [P. Gambino and C. Schwanda, arXiv:1307.4551].

Radiative tail in the dimuon invariant mass spectrum

Red line - no real photon and/or radiation only from the muons. It vanishes when $\boldsymbol{m}_{\boldsymbol{\mu}} \boldsymbol{\rightarrow} \mathbf{0}$.
Blue line - remainder due to radiation from the quarks. IR-safe because \boldsymbol{B}_{s} is neutral.
Phase-space suppressed but survives in the $\boldsymbol{m}_{\boldsymbol{\mu}} \rightarrow \mathbf{0}$ limit.
Interference between the two contributions is negligible - suppressed both by phase-space and $\boldsymbol{m}_{\mu}^{2} / \boldsymbol{M}_{\boldsymbol{B}_{s}}^{2}$.

Inclusive weak radiative B-meson decay

SM estimate [hep-ph/0609232]:
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{SM}}=(3.15 \pm 0.23) \times 10^{-4}$
Contributions to the total TH uncertainty (summed in quadrature):
5% non-perturbative, $\quad 3 \%$ from the interpolation in m_{c}
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right), \quad 3 \%$ parametric

Experimental world average (HFAG, 2.08.2012):
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{EXP}}=(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$
Experiment agrees with the SM at better than $\sim 1 \sigma$ level.
Uncertainties: TH $\sim 7 \%, \quad$ EXP $\sim 6.5 \%$.

The "raw" photon energy spectra in the inclusive measurements

The peaks are centred around

$$
\frac{1}{2} m_{b} \simeq 2.35 \mathrm{GeV}
$$

which corresponds to a two-body $b \rightarrow s \gamma$ decay.
Broadening is due to (mainly):

- perturbative gluon bremsstrahlung,
- motion of the b quark inside the \bar{B} meson,
- motion of the \bar{B} meson in the $\Upsilon(4 S)$ frame.

Decoupling of $W, Z, t, H^{0} \Rightarrow$ effective weak interaction Lagrangian:

$$
L_{\text {weak }} \sim \Sigma C_{i}\left(\mu_{b}\right) Q_{i}
$$

8 operators matter in the SM when the higher-order EW and/or CKM-suppressed effects are neglected:

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\left|C_{7}\right|^{2} \Gamma_{77}\left(E_{0}\right)+(\text { other })
$$

Optical theorem:
$\frac{d \Gamma_{77}}{d E_{\gamma}} \sim \operatorname{Im}\left\{{\underset{\sim}{\bar{B}}}_{\substack{\alpha}}^{\sim}\right.$

Integrating the amplitude \boldsymbol{A} over \boldsymbol{E}_{γ} :

OPE on
the ring \Rightarrow Non-perturbative corrections to $\Gamma_{77}\left(\boldsymbol{E}_{0}\right)$ form a series in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$ and α_{s} that begins with

$$
\frac{\mu_{\pi}^{2}}{m_{b}^{2}}, \frac{\mu_{G}^{2}}{m_{b}^{2}}, \frac{\rho_{D}^{3}}{m_{b}^{3}}, \frac{\rho_{L S}^{3}}{m_{b}^{3}, \ldots ;} \frac{\alpha_{s} \mu_{\pi}^{2}}{\left(m_{b}-2 E_{0}\right)^{2}}, \frac{\alpha_{s} \mu_{G}^{2}}{m_{b}\left(m_{b}-2 E_{0}\right)} ; \ldots,
$$

where $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ are extracted from the semileptonic $\bar{B} \rightarrow X_{c} e \bar{\nu}_{\text {spectra }}$ and the $\boldsymbol{B}-\boldsymbol{B}^{\star}$ mass difference.

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity:
$\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i} C_{j} K_{i j}}_{P\left(E_{0}\right)}$
Expansions of the Wilson coefficients and $K_{i j}$:
$C_{i}\left(\mu_{b}\right)=C_{i}^{(0)}\left(\mu_{b}\right)+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi} C_{i}^{(1)}\left(\mu_{b}\right)+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2} C_{i}^{(2)}\left(\mu_{b}\right)+\ldots$
$K_{i j}=K_{i j}^{(0)}+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi} K_{i j}^{(1)}+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2} K_{i j}^{(2)}+\ldots$

$$
\mu_{b} \sim \frac{m_{b}}{2}
$$

Most important at the NNLO: $K_{77}^{(2)}, K_{27}^{(2)}$ and $K_{17}^{(2)}$.
They depend on $\frac{\mu_{b}}{m_{b}}, \frac{E_{0}}{m_{b}}$ and $r=\frac{m_{c}}{m_{b}}$.

Evaluation of $K_{27}^{(2)}$ and $K_{17}^{(2)}$ for $m_{c}=0$:
[M. Czakon, P. Fiedler, T. Huber, MM, T. Schutzmeier, M. Steinhauser, to be published]

Master integrals and differential equations:

	n_{D}	$n_{\text {OS }}$	$n_{\text {eff }}$	$n_{\text {massless }}$
2-particle cuts	292	92	143	9
3-particle cuts	267	54	110	11
4-particle cuts	292	17	37	7

$$
\frac{d}{d z} I_{i}(z)=\sum_{j} R_{i j}(z) I_{j}(z), \quad z=\frac{p^{2}}{m_{b}^{2}}
$$

Boundary conditions in the vicinity of $z=0$:

Massless integrals for the boundary conditions:

(2)

Results for the NNLO corrections:

$$
\begin{aligned}
K_{27}^{(2)}\left(r, E_{0}\right) & =A_{2}+F_{2}\left(r, E_{0}\right)+3 f_{q}\left(r, E_{0}\right)+f_{b}(r)+f_{c}(r)+\frac{8}{3} \phi_{27}^{(1)}\left(r, E_{0}\right) \ln r \\
& +\left[\left(4 L_{c}-x_{m}\right) r \frac{d}{d r}+x_{m} E_{0} \frac{d}{d E_{0}}\right] f_{N L O}\left(r, E_{0}\right)+\frac{416}{81} x_{m} \\
& +\left(\frac{10}{3} K_{27}^{(1)}-\frac{2}{3} K_{47}^{(1)}-\frac{208}{81} K_{77}^{(1)}-\frac{35}{27} K_{78}^{(1)}-\frac{254}{81}\right) L_{b}-\frac{5948}{729} L_{b}^{2}, \\
K_{17}^{(2)}\left(r, E_{0}\right) & =-\frac{1}{6} K_{27}^{(2)}\left(r, E_{0}\right)+A_{1}+F_{1}\left(r, E_{0}\right)+\left(\frac{94}{81}-\frac{3}{2} K_{27}^{(1)}-\frac{3}{4} K_{78}^{(1)}\right) L_{b}-\frac{34}{27} L_{b}^{2},
\end{aligned}
$$

where $F_{i}(0,0) \equiv 0, A_{1} \simeq 22.605, A_{2} \simeq-81.179$ from the present calculation.

Next, we interpolate in m_{c} by assuming that $F_{i}(r, 0)$ are linear combinations of $f_{q}(r, 0), f_{N L O}(r, 0), r \frac{d}{d r} f_{N L O}(r, 0)$ and a constant term. The known large- r behaviour of F_{i} [hep-ph/0609241] and the condition $F_{i}(0,0) \equiv 0$ fix these linear combinations in a unique manner.

Interferences not involving the photonic dipole operator are treated as follows:

Two-particle cuts are known (just $|\mathrm{NLO}|^{2}$).

Incorporating other perturbative contributions evaluated after the previous phenomenological analysis in hep-ph/0609232:

1. Four-loop mixing (current-current) \rightarrow (gluonic dipole)
M. Czakon, U. Haisch, MM, JHEP 0703 (2007) 008 [hep-ph/0612329]
2. Diagrams with massive quark loops on the gluon lines
R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 0709 (2007) 072 [arXiv:0707.3090]
H. M. Asatrian, T. Ewerth, H. Gabrielyan and C. Greub, Phys. Lett. B 647 (2007) 173 [hep-ph/0611123]
T. Ewerth, Phys. Lett. B 669 (2008) 167 [arXiv:0805.3911]
3. Complete interference (photonic dipole)-(gluonic dipole)
H. M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub and G. Ossola, Phys. Rev. D 82 (2010) 074006 [arXiv:1005.5587]
4. New BLM corrections to contributions from 3-body and 4-body final states for interferences not involving the photonic dipole
A. Ferroglia and U. Haisch, Phys. Rev. D 82 (2010) 094012 [arXiv:1009.2144]

MM and M. Poradziński, Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685]
5. LO contributions from $b \rightarrow s \gamma q \bar{q},(q=u, d, s)$ from 4-quark operators ("penguin" or CKM-suppressed)
M. Kamiński, MM and M. Poradziński, Phys. Rev. D 86 (2012) 094004 [arXiv:1209.0965]
6. NLO contributions from $b \rightarrow s \gamma q \bar{q},(q=u, d, s)$ from interferences of the above operators with $Q_{1,2,7,8}$ T. Huber, M. Poradziński, J. Virto, in preparation

Taking into account new non-perturbative analyses:

M. Benzke, S. J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099 [arXiv:1003.5012]
T. Ewerth, P. Gambino and S. Nandi, Nucl. Phys. B 830 (2010) 278 [arXiv:0911.2175]

Updating the parameters (Parametric uncertainties go down to 2.4\%)
P. Gambino, C. Schwanda, Phys. Rev. D 89 (2014) 014022

Relative NLO and NNLO QCD corrections to $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ and their dependence on m_{c} / m_{b}

Summary

- Combining the recently calculated NNLO QCD and NLO EW corrections to $\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$, we find a significant reduction of the non-parametric theoretical uncertainties ($\sim 8 \% \rightarrow \sim 1.5 \%$).
- The current SM result $\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.65 \pm 0.23) \times 10^{-9}$ is consistent with the measured value of $(2.9 \pm 0.7) \times 10^{-9}$. The main theory uncertainties are parametric ($\left|V_{c b}\right|, f_{B_{s}}, \ldots$).
- Dominant NNLO corrections to $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ will soon be known not only in the large m_{c} limit, but also at $m_{c}=0$. If the current result survives, no reduction of uncertainties with respect to the 2006 estimate is expected, except for the parametric one.

