Introduction

Decay Matrix

Dimuon asymmet

Conclusions

Neutral Meson Mixing

Ulrich Nierste Karlsruhe Institute of Technology

Federal Ministry of Education and Research

Lattice meets continuum: QCD calculations in flavour physics Siegen, 29 Sep – 2 Oct 2014

Introduction

 $B-\overline{B}$ mixing

Mass difference

Decay Matrix

Dimuon asymmetry

Conclusions

Introduction B-Ē mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions Meson-antimeson mixing

Only K^0, D^0, B^0_d , and B^0_s mesons mix with their antiparticles:

Introduction

Mass difference

Decay Matrix

Dimuon asymmetr

Conclusions

Effects of meson-antimeson mixing $(M - \overline{M} \text{ mixing, with } M = K, D, B_d, \text{ or } B_s)$:

• The flavour eigenstates $|M\rangle$ and $|\overline{M}\rangle$ are no mass eigenstates.

This feature is exploited in K physics: The lifetimes of the mass eigenstates K_{long} and K_{short} differ by a factor of 500.

⇒ Make a K_{long} beam by producing K's and \overline{K} 's and wait.

Effects of meson-antimeson mixing $(M-\overline{M} \text{ mixing}, \text{ with } M = K, D, B_d, \text{ or } B_s)$:

- The flavour eigenstates $|M\rangle$ and $|\overline{M}\rangle$ are no mass eigenstates.
- A meson produced as an |M⟩ at time t = 0 oscillates between the states |M⟩ and |M⟩.

This feature is exploited in the study of D, B_d , or B_s mesons.

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

Introduction $B-\overline{B}$ mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions $B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*.

The decay matrix element Γ_{12}^q stems from the absorptve (imaginary) part of the box diagram, internal *c*, *u*.

Introduction $B-\overline{B}$ mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions $B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal *c*, *u*.

3 physical quantities in $B_q - \overline{B}_q$ mixing:

$$\left| M_{12}^{q} \right|, \quad \left| \Gamma_{12}^{q} \right|, \quad \phi_{q} \equiv \arg\left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}} \right)$$

The two eigenstates found by diagonalising $M - i \Gamma/2$ differ in their masses and widths:

mass difference $\Delta m_q \simeq 2|M_{12}^q|$, width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$ The two eigenstates found by diagonalising $M - i \Gamma/2$ differ in their masses and widths:

mass difference $\Delta m_q \simeq 2|M_{12}^q|$, width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

$$a_{ ext{fs}}^q = rac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi_q$$

Operator Product Expansion:

 $M_{12} = (V_{tq}^* V_{tb})^2 CQ$

Local Operator:

 $Q = \overline{q}_L \gamma_\nu b_L \, \overline{q}_L \gamma^\nu b_L$

Theoretical uncertainty of Δm_q dominated by matrix element:

$$\langle \mathrm{B}_{\mathrm{q}} | \mathcal{Q} | \overline{\mathrm{B}}_{q} \rangle = rac{2}{3} \mathcal{M}_{B_{q}}^{2} f_{B_{q}}^{2} B_{B_{q}}$$

Standard Model: $C = C(m_t, \alpha_s)$ is well-known.

 $B_s - \overline{B}_s$ mixing: CKM unitarity fixes $|V_{ts}| \simeq |V_{cb}|$. Use lattice results for $f_{B_a}^2 B_{B_a}$ to confront Δm_s^{exp} with the Standard Model:

$$\Delta m_{s} = \left(18.8 \pm 0.6_{V_{cb}} \pm 0.3_{m_{t}} \pm 0.1_{\alpha_{s}} \right) \, \mathrm{ps^{-1}} \, \frac{t_{B_{s}}^{2} \, B_{B_{s}}}{(220 \, \mathrm{MeV})^{2}}$$

Here $\overline{\text{MS}}$ -NDR scheme for B_{B_q} at scale m_b . Often used: scheme-invariant $\widehat{B}_{B_q} = 1.51 B_{B_q}$. Recall:

$$\Delta m_{s} = \left(\begin{array}{c} 18.8 \pm 0.6 _{V_{cb}} \pm 0.3 _{m_{t}} \pm 0.1 _{\alpha_{s}} \end{array} \right) \, \mathrm{ps^{-1}} \, \frac{f_{B_{s}}^{2} \, B_{B_{s}}}{(220 \, \mathrm{MeV})^{2}}$$

CKMfitter lattice averages (Moriond 2014):

 $f_{B_s} = (226.5 \pm 1.1 \pm 5.4) \,\text{MeV}, \qquad B_{B_s} = 0.87 \pm 0.01 \pm 0.02$ means $f_{B_s}^2 B_{B_s} = [(212 \pm 9) \,\text{MeV}]^2$ and

 $\Delta m_s = (17.4 \pm 1.7) \, \mathrm{ps}^{-1}$

complying with LHCb/CDF average

 $\Delta m_s^{\exp} = (17.761 \pm 0.022) \, \mathrm{ps}^{-1}.$

 $\Delta m_{\rm s} = (17.4 \pm 1.7) \, {\rm ps}^{-1}$ versus $\Delta m_s^{exp} = (17.761 \pm 0.022) \text{ ps}^{-1}$, too good to be true... $\Delta m_s = (17.4 \pm 1.7) \text{ ps}^{-1} \text{ versus}$ $\Delta m_s^{\text{exp}} = (17.761 \pm 0.022) \text{ ps}^{-1}$, too good to be true...

Few lattice-QCD calculations of $f_{B_s}^2 B_{B_s}$ available!

Prediction of Δm_s largely relies on calculations of f_{B_s} and the prejudice $B_{B_s} \simeq 0.85$.

FLAG recommends to use HPQCD'09 value

$$f_{B_s}\sqrt{B_{B_s}}=($$
216 \pm 15 $)\,$ MeV

giving

 $\Delta m_s = (18.2 \pm 2.6) \, \mathrm{ps}^{-1}$

 $|V_{cb}|$, short-distance coefficient and some hadronic uncertainties drop out from the ratio $\Delta m_d / \Delta m_s$:

Usual way to probe the Standard Model with Δm_d : Global fit to unitarity triangle.

Easier way: Determine R_t from Δm_d :

$$R_{t} = 0.880 \frac{\xi}{1.16} \sqrt{\frac{\Delta m_{d}}{0.49 \,\mathrm{ps}^{-1}}} \sqrt{\frac{17 \,\mathrm{ps}^{-1}}{\Delta m_{s}}} \frac{0.22}{|V_{us}|} \left(1 + 0.050 \overline{\rho}\right)$$

and compare with indirect determination of R_t from angles:

$$R_{t} = \frac{\sin \gamma}{\sin \alpha} = \frac{\sin(\alpha + \beta)}{\sin \alpha}$$

$$\beta = 21.5^{\circ} \pm 0.7^{\circ}, \ \alpha = 85.4^{\circ} + 4.0^{\circ}$$

$$\Rightarrow R_{t} = 0.960 \pm 0.026$$

$$R_{u}$$

$$R_{u}$$

$$R_{u}$$

$$R_{t}$$

$$R_{t}$$

 R_t from Δm_d :

$$R_{t} = 0.880 \frac{\xi}{1.16} \sqrt{\frac{\Delta m_{d}}{0.49 \,\mathrm{ps}^{-1}}} \sqrt{\frac{17 \,\mathrm{ps}^{-1}}{\Delta m_{s}}} \frac{0.22}{|V_{us}|} \left(1 + 0.050 \overline{\rho}\right)$$

FLAG recommends Fermilab/MILC (2012): $\xi = 1.268 \pm 0.063$ implying

 $R_t = 0.942 \pm 0.047_{\xi} \pm 0.006_{\text{rest}}$

agrees well with $R_t = 0.960 \pm 0.026$ from angles.

CKMfitter (Moriond 2014) global fit result:

 $R_t = 0.9171_{-0.0166}^{+0.0082}$

QCD sum rule result $\xi = 1.16 \pm 0.04$ challenged by data: $R_t = 0.86 \pm 0.03$

The calculation Γ_{12}^q , q = d, s, is needed for the width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos \phi_q$ and the semileptonic CP asymmetry $a_{fs}^q = \frac{|\Gamma_{12}^q|}{|M_{rs}^q|}\sin \phi_q$

In the Standard Model

 $\phi_{s} = 0.22^{\circ} \pm 0.06^{\circ}$ and $\phi_{d} = -4.3^{\circ} \pm 1.4^{\circ}$.

Recalling $\phi_q = \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$, a new physics contribution to arg M_{12}^q may deplete $\Delta\Gamma_q$ and enhance $|a_{fs}^q|$ to a level observable at current experiments.

But: Precise data on CP violation in $B_d \rightarrow J/\psi K_S$ and $B_s \rightarrow J/\psi \phi$ preclude large NP contributions to $\arg \phi_d$ and $\arg \phi_s$.

Introduction	$B-\overline{B}$ mixing	Mass difference	Decay Matrix	Dimuon asymmetry	Conclusions

Leading contribution to Γ_{12}^s :

 Γ_{12}^{s} stems from Cabibbo-favoured tree-level $b \rightarrow c\overline{c}s$ decays, sizable new-physics contributions are impossible.

Updated Standard-Model prediction for $\Delta \Gamma_s / \Delta m_s$ in terms of hadronic parameters:

$$\frac{\Delta\Gamma_{s}}{\Delta m_{s}}\Delta m_{s}^{\exp} = \left[0.082 + 0.019\frac{\widetilde{B}_{S,B_{s}}'}{B_{B_{s}}} - 0.025\frac{B_{R}}{B_{B_{s}}}\right] \text{ ps}^{-1}$$
Here
$$\langle B_{s}|\overline{s}_{L}^{\alpha}b_{R}^{\beta}\,\overline{s}_{L}^{\beta}b_{R}^{\alpha}|\overline{B}_{s}\rangle = \frac{1}{12}M_{B_{s}}^{2}\,f_{B_{s}}^{2}\widetilde{B}_{S,B_{s}}'$$

and $B_R = 1 \pm 0.5$ parametrises the size of higher-dimension operators.

$$\Delta\Gamma_{m{s}}^{
m exp} = (0.091 \pm 0.009)\,{
m ps}^{-1}$$

DØ has measured the CP-violating quantity

$$A_{S} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

with N^{++} and N^{--} the number of (μ^+, μ^+) and (μ^-, μ^-) pairs, respectively, resulting from (b, \overline{b}) pairs produced in $p\overline{p}$ collisions.

Non-zero A_S requires that at least one of the (b, \overline{b}) quarks hadronises into a $B_{d,s}$ which oscillates into $\overline{B}_{d,s}$. The neutral-*B* sample consists of 58% B_d and 42% B_s mesons.

If all observed μ^{\pm} are from b, \overline{b} decays, A_{S} is related to the *CP* asymmetries in flavour-specific decays $a_{fs}^{d,s}$ (a.k.a as semileptonic *CP* asymmetries) as

 $A_{S} = 0.58a_{fs}^{d} + 0.42a_{fs}^{s}$

SM prediction: $A_S^{SM} = -(2.0 \pm 0.3) \cdot 10^{-4}$ A. Lenz, UN, CKM2010, arXiv:1102.4272

DØ finds $A_S < A_S^{SM}$. Deviations from SM prediction:

year	Ref.	deviation
2010	PRL 105, 081801 (2010)	3.2 σ
2011	PRD 84, 052007 (2011)	3.9σ
2013	PRD 89, 012002 (2014)	3.6 σ (*)

In (*) mixing-induced CP violation in $b \rightarrow c\overline{c}d$ is included. \longrightarrow topic of this talk

courtesy of M. Vesterinen.

Yesterday M. Vesterinen (LHCb) has presented

 $a^d_{
m fs} = (-0.2 \pm 1.9 \pm 3.0) \cdot 10^{-3},$ LHCb-PAPER-2014-053,

newly obtained from 3 fb⁻¹ dataset and

 $a^s_{\rm fs} = (-0.6 \pm 5.0 \pm 3.6) \cdot 10^{-3},$ PLB 728C 607 (2014),

obtained from 2011 dataset (1 fb^{-1}). Results comply with the SM predictions

 $a_{\rm fs}^{d,\rm SM} = -(4.1\pm0.6)\cdot10^{-4},$

 $a_{
m fs}^{s,
m SM} = (1.9\pm0.3)\cdot10^{-5}$

Beneke,Buchalla,Lenz,UN, 2003 Lenz,UN, 2006,2011

Introduction B-B mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions Breaking news

Decay Matrix

Dimuon asymmetry

Conclusions

Discovery of Guennadi Borissov and Bruce Hoeneisen (Phys.Rev. D87, 074020 (2013)):

pр $\mu^+ X \leftarrow \overline{b} \ b \rightarrow \overline{B}_d \xrightarrow{\text{mixes}} \frac{p}{q} g_-(t) B_d + g_+(t) \overline{B}_d \rightarrow D^+ D^- \hookrightarrow \mu^+ X$ CP violation in the interference of $B_d - \overline{B}_d$ mixing and $(\overline{B}_{d}) \rightarrow D^{+}D^{-}$ creates and asymmetry w.r.t. pр $\mu^{-}X \leftarrow b \ \overline{b} \rightarrow B_{d} \xrightarrow{\text{mixes}} g_{+}(t)B_{d} + \frac{q}{\rho}g_{-}(t)\overline{B}_{d} \rightarrow D^{+}D^{-} \hookrightarrow \mu^{-}X$

Decay Matrix

Dimuon asymmetry

Discovery of Guennadi Borissov and Bruce Hoeneisen (Phys.Rev. D87, 074020 (2013)):

pр $\mu^+ X \leftarrow \overline{b} \ b \ o \ \overline{B}_d \ \stackrel{\text{mixes}}{\longrightarrow} \ \frac{p}{q} g_-(t) B_d + g_+(t) \overline{B}_d \ o \ D^+ D^- \ \hookrightarrow \ \mu^+ X$ CP violation in the interference of $B_d - \overline{B}_d$ mixing and $(\overline{B}_{d}^{)} \rightarrow D^{+}D^{-}$ creates and asymmetry w.r.t. *p p* ↓ $\mu^{-}X \leftarrow b \ \overline{b} \rightarrow B_{d} \xrightarrow{\text{mixes}} g_{+}(t)B_{d} + \frac{q}{p}g_{-}(t)\overline{B}_{d} \rightarrow D^{+}D^{-}$ $\hookrightarrow \mu^- X$

This CP asymmetry is proportional to $\sin(2\beta)$, with 2β being the phase of the $B_d - \overline{B}_d$ mixing amplitude M_{12} (in the standard phase convention in which the $b \rightarrow c\overline{c}d$ decay amplitude is (essentially) real).

These $b \rightarrow c\overline{c}d$ decays create a contribution A_S^{int} to A_S . CP-even and CP-odd final state contribute with opposite sign, but:

$$\Gamma(B_{ ext{CP}+} o X_{c\overline{c}}) - \Gamma(B_{ ext{CP}-} o X_{c\overline{c}}) \simeq \Delta \Gamma$$

Dunietz,Fleischer,UN 2001; Beneke,Buchalla,Lenz,UN 2003 so that

Here $x_d = \Delta m / \Gamma$ and Γ is the total B_d width.

Within the SM CP violation requires

$$(m_u^2 - m_c^2)(m_c^2 - m_t^2)(m_u^2 - m_t^2) \times (m_d^2 - m_s^2)(m_s^2 - m_b^2)(m_d^2 - m_b^2) \operatorname{Im}(V_{11}V_{21}^*V_{22}V_{12}^*) \neq 0$$

$$\Rightarrow$$
 CP asymmetries vanish for $m_c = m_u$.

Mass matrix M, decay matrix Γ :

$$a_{
m fs}^{d}={
m Im}\,rac{\Gamma_{12}}{M_{12}}\proptorac{m_{c}^{2}-m_{u}^{2}}{m_{b}^{2}}$$

vanishes for $m_c = m_u$, while

$$\Delta \Gamma = -\Delta m \operatorname{Re} \frac{\Gamma_{12}}{M_{12}}$$

and $A_{\rm S}^{\rm int}$ does not vanish in this limit!

Mass matrix M, decay matrix Γ :

$$a_{
m fs}^d = {
m Im}\, rac{\Gamma_{12}}{M_{12}} \propto rac{m_c^2-m_u^2}{m_b^2}$$

vanishes for $m_c = m_u$, while

$$\Delta\Gamma = -\Delta m \operatorname{Re} rac{\Gamma_{12}}{M_{12}}$$

and $A_{\rm S}^{\rm int}$ does not vanish in this limit!

⇒ There should be a contribution with up quarks which contributes to A_S^{int} with opposite sign.

$$\Gamma_{12} = -\left[\lambda_c^2 \Gamma_{12}^{cc} + 2\lambda_c \lambda_u \Gamma_{12}^{uc} + \lambda_u^2 \Gamma_{12}^{uu}\right]$$

with $\lambda_c = V_{cd}^* V_{cb}$, $\lambda_u = V_{ud}^* V_{ub}$, and $\lambda_t = -\lambda_c - \lambda_u = V_{td}^* V_{tb}$.

In the SM the charm-charm contribution dominates

$$\Delta\Gamma = -\Delta m \operatorname{Re} rac{\Gamma_{12}}{M_{12}} pprox 2 |\lambda_c|^2 \Gamma_{12}^{cc}$$

$$egin{array}{rcl} |B(t)
angle &=& g_+(t) \,|B
angle + rac{q}{p} \,g_-(t) \,|\overline{B}
angle \,, \ |\overline{B}(t)
angle &=& rac{p}{q} \,g_-(t) \,|B
angle + &g_+(t) \,|\overline{B}
angle . \end{array}$$

Time-dependent decay rate $\Gamma[B(t) \rightarrow f] = N_f |\langle f|B(t) \rangle|^2$ with phase-space factor N_f . Interference term in $\Gamma[B(t) \rightarrow X_{c\bar{c}}]$:

$$B_{cc}(t) = 2 \operatorname{Re} \left[g_{+}^{*}(t) \frac{q}{p} g_{-}(t) \underbrace{\sum_{f \in X_{c\overline{c}}} N_{f} \langle B | f \rangle \langle f | \overline{B} \rangle}_{-\lambda_{c}^{2} \Gamma_{12}^{cc}} \right]$$

$$egin{array}{rcl} |B(t)
angle &=& g_+(t) \,|B
angle + rac{q}{
ho} \,g_-(t) \,|\overline{B}
angle \,, \ |\overline{B}(t)
angle &=& rac{
ho}{q} \,g_-(t) \,|B
angle + &g_+(t) \,|\overline{B}
angle . \end{array}$$

Time-dependent decay rate $\Gamma[B(t) \rightarrow f] = N_f |\langle f|B(t) \rangle|^2$ with phase-space factor N_f . Interference term in $\Gamma[B(t) \rightarrow X_{c\overline{c}}]$:

$$B_{cc}(t) = 2 \operatorname{Re} \left[g_{+}^{*}(t) \frac{q}{p} g_{-}(t) \underbrace{\sum_{f \in X_{c\overline{c}}} N_{f} \langle B | f \rangle \langle f | \overline{B} \rangle}_{-\lambda_{c}^{2} \Gamma_{12}^{cc}} \right]$$

 $B_{cc}(t) = \Gamma_{12}^{cc} e^{-\Gamma t} \sin(\Delta m t) \operatorname{Im} \left(\frac{q}{p} \lambda_c^2\right) = \Gamma_{12}^{cc} |\lambda_c|^2 e^{-\Gamma t} \sin(\Delta m t) \sin(2\beta)$

The interference term in $\Gamma[\overline{B}(t) \rightarrow X_{c\overline{c}}]$ has the opposite sign. Thus the charm-charm contribution to A_S^{int} is

$$A_{S}^{\text{int},c\overline{c}} = -P_{c \to \mu} \int_{0}^{\infty} dt \, 2B_{cc}(t) = -P_{c \to \mu} \, \frac{2\Gamma_{12}^{cc}}{\Gamma} \, |\lambda_{c}|^{2} \sin(2\beta) \frac{x_{d}}{1 + x_{d}^{2}}$$

Add missing up contribution from up quark, taking $m_c = m_u$ here, so that $\Gamma_{12}^{cu} = \Gamma_{12}^{cc}$: To find $A_{S}^{int,c\overline{c}} + A_{S}^{int,c\overline{u}}$ from $A_{S}^{int,c\overline{c}}$ simply replace

$$\operatorname{Im}\left(\frac{q}{\rho}\lambda_{c}^{2}\right) \to \operatorname{Im}\left(\frac{q}{\rho}\lambda_{c}(\lambda_{c}+\lambda_{u})\right) = -\operatorname{Im}\left(\frac{q}{\rho}\lambda_{c}\lambda_{t}\right)$$

amounting to

 $|\lambda_c|^2 \sin(2\beta) \rightarrow |\lambda_c \lambda_t| \sin \beta$, smaller by factor of 0.49!

Decay Matrix

To comply with the Jarlskog criterion we need also to add $A_{c}^{int, u\bar{c}} + A_{c}^{int, u\bar{u}}$.

However, in our real world with $m_c \neq m_u$ the probabilities $P_{u \to \mu}$ and $P_{c \to \mu}$ are very different. μ 's from the decay chain $b \to u \to \mu$ require that e.g. a K^+ or π^+ decays (semi-) muonically before reaching the detector. In the considered limit $m_c = m_u$:

 $A_{S}^{\text{int}} = -(P_{c \to \mu} - P_{u \to \mu}) \frac{2\Gamma_{12}^{cc}}{\Gamma} |\lambda_{c}\lambda_{t}| \sin(\beta) \frac{x_{d}}{1 + x_{d}^{2}}$

Thus the estimate in Phys.Rev. D87, 074020 (2013)

$$A_S^{\rm int} = -(4.5 \pm 1.6)10^{-4}$$

gets reduced to

 $\textit{A}_{S}^{\text{int}} > -(2.2\pm0.8)10^{-4}$

and the discrepancy between the DØ dimuon asymmetry and the SM prediction is actually *larger* (by roughly 0.2σ) than the 3.6 σ quoted in Phys. Rev. D 89, 012002 (2014).

 $\Gamma_{12}^{cc}, \Gamma_{12}^{cu}, \Gamma_{12}^{uc}$, and Γ_{12}^{uu} in a different way than a_{fs}^{d} and $\Delta \Gamma$!

 $\Gamma_{12}^{cc}, \Gamma_{12}^{cu}, \Gamma_{12}^{uc}$, and Γ_{12}^{uu} in a different way than a_{fs}^{d} and $\Delta\Gamma$!

Thus the sensitivity to new physics is also different.

Introduction $B-\bar{B}$ mixing Mass difference Decay Matrix Dimuon asymmetry Important lesson: A_{S}^{int} depends on the individual components

 $\Gamma_{12}^{cc}, \Gamma_{12}^{cu}, \Gamma_{12}^{uc}$, and Γ_{12}^{uu} in a different way than a_{fs}^{d} and $\Delta \Gamma$!

Thus the sensitivity to new physics is also different. Consider a new contribution of the type

real coefficient $\times \lambda_t \times \overline{d}b(\overline{u}u + \overline{c}c + \ldots),$

i.e. new physics coming with a gluon/photon/Z penguin operator: The interference term with the SM tree amplitude amounts to (for $m_c = m_u$)

$$\delta a_{
m fs}^{d} \propto {
m Im}\, rac{\lambda_t (\lambda_u + \lambda_c)}{\lambda_t^2} = -{
m Im}\, rac{\lambda_t^2}{\lambda_t^2} = 0$$

while

$$\delta A_s^{\mathrm{int}} \propto \mathrm{Im} \, rac{\lambda_t (P_{u o \mu} \lambda_u + P_{c o \mu} \lambda_c)}{\lambda_t^2}
eq 0.$$

Also $\Delta\Gamma$ will change from its SM value.

• $B-\overline{B}$ mixing is highly sensitive to new physics and stays interesting.

- *B*–*B* mixing is highly sensitive to new physics and stays interesting.
- We start to see the chiral logarithms pushing lattice predictions of ξ to $\xi = 1.268 \pm 0.063$ in the data. The old QCD sum rule result $\xi = 1.16 \pm 0.04$ is challenged.

- *B*–*B* mixing is highly sensitive to new physics and stays interesting.
- We start to see the chiral logarithms pushing lattice predictions of ξ to $\xi = 1.268 \pm 0.063$ in the data. The old QCD sum rule result $\xi = 1.16 \pm 0.04$ is challenged.
- The LHCb error on $\Delta \Gamma_s$ is much smaller than the theory error now.

- $B-\overline{B}$ mixing is highly sensitive to new physics and stays interesting.
- We start to see the chiral logarithms pushing lattice predictions of ξ to $\xi = 1.268 \pm 0.063$ in the data. The old QCD sum rule result $\xi = 1.16 \pm 0.04$ is challenged.
- The LHCb error on $\Delta\Gamma_s$ is much smaller than the theory error now.
- There is rapid experimental progress on a_{fs}^d and a_{fs}^s .

troduction	$B-\overline{B}$ mixing	Mass difference	Decay Matrix	Dimuon asymmetry	Conclusions

 I agree with Borissov and Hoeneisen that the DØ dimuon asymmetry receives a contribution A^{int}_S from mixing-induced CP violation in decays B → X → X'μ.

oduction	$B-\overline{B}$ mixing	Mass difference	Decay Matrix	Dimuon asymmetry	Conclusions

- I agree with Borissov and Hoeneisen that the DØ dimuon asymmetry receives a contribution A^{int}_S from mixing-induced CP violation in decays B → X → X'μ.
- Final states with all combinations (c, c), (c, u), (u, c), and (u, u) must be considered.

- I agree with Borissov and Hoeneisen that the DØ dimuon asymmetry receives a contribution A_S^{int} from mixing-induced CP violation in decays $B \to X \to X'\mu$.
- Final states with all combinations (c, c), (c, u), (u, c), and (u, u) must be considered.

$$A_{S}^{\text{int}} = -(P_{c \to \mu} - P_{u \to \mu}) \frac{|\Delta \Gamma|}{\Gamma} \frac{|\lambda_{t}|}{|\lambda_{c}|} \sin(\beta) \frac{x_{d}}{1 + x_{d}^{2}}$$

is smaller in magnitude by at least a factor of 0.49 compared to the formulae used in the DØ analysis, so that the discrepancy with the SM is larger than the quoted 3.6σ .

- I agree with Borissov and Hoeneisen that the DØ dimuon asymmetry receives a contribution A_S^{int} from mixing-induced CP violation in decays $B \to X \to X'\mu$.
- Final states with all combinations (c, c), (c, u), (u, c), and (u, u) must be considered.

$$A_{S}^{\text{int}} = -(P_{c \to \mu} - P_{u \to \mu}) \frac{|\Delta \Gamma|}{\Gamma} \frac{|\lambda_{t}|}{|\lambda_{c}|} \sin(\beta) \frac{x_{d}}{1 + x_{d}^{2}}$$

is smaller in magnitude by at least a factor of 0.49 compared to the formulae used in the DØ analysis, so that the discrepancy with the SM is larger than the quoted 3.6σ .

• A_S^{int} depends differently on new physics than a_{fs}^d .

Introduction

 $B-\overline{B}$ mixing

Mass difference

Decay Matrix

Dimuon asymme

Conclusions

Slides for discussion

Introduction
$$B-\overline{B}$$
 mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions $\Delta\Gamma_{S}$

$$\frac{\Delta\Gamma_s}{\Delta m_s} \Delta m_s^{\exp} = \left[0.082 \pm 0.007 + (0.019 \pm 0.001) \frac{B'_{S,B_s}}{B_{B_s}} - (0.027 \pm 0.003) \frac{B_R}{B_{B_s}} \right] \text{ps}^{-1}$$

Leading power in Λ_{QCD}/m_b : Only two operators:

$$egin{aligned} & \mathcal{Q} = \overline{s}_lpha \gamma_\mu (1-\gamma_5) b_lpha \, \overline{s}_eta \gamma^\mu (1-\gamma_5) b_eta \ & \widetilde{\mathcal{Q}}_\mathcal{S} = \overline{s}_lpha (1+\gamma_5) b_eta \, \overline{s}_eta (1+\gamma_5) b_lpha \end{aligned}$$

with colour indices α , β . Can trade $Q_S = \overline{s}_{\alpha}(1 + \gamma_5)b_{\alpha} \overline{s}_{\beta}(1 + \gamma_5)b_{\beta}$ for the $1/m_b$ -suppressed operator

$$R_0 \equiv Q_S + \tilde{Q}_S + \frac{1}{2}Q$$

I.e. R₀ vanishes identically in HQET.

Most relevant:

$$\widetilde{R}_2 = rac{1}{m_b^2} \, \overline{s}_eta \overleftarrow{D}_
ho \gamma^\mu (1-\gamma_5) D^
ho b_lpha \, \overline{s}_lpha \gamma_\mu (1-\gamma_5) b_eta$$

Any chance to tackle it on the lattice? (In HQET $D^{\rho}b \rightarrow v^{\rho}b_{v}$.) Second most relevant:

$$R_0 \equiv Q_S + \tilde{Q}_S + rac{1}{2}Q$$

Occasionally people take $\langle B_s | R_0 | \overline{B}_s \rangle$ from lattice calculations of $\langle B_s | Q_S | \overline{B}_s \rangle$, $\langle B_s | \tilde{Q}_S | \overline{B}_s \rangle$, and $\langle B_s | Q | \overline{B}_s \rangle$, but to my knowledge the lattice-continuum matching is not done to order α_s / m_b .

Introduction $B-\bar{B}$ mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions $1/m_b$ -suppressed operators

$$\begin{array}{lll} \langle B_{s}|R_{0}|\overline{B}_{s}\rangle & = & -\frac{4}{3}\left[\frac{M_{B_{s}}^{2}}{m_{b}^{\text{pole}\,2}\left(1+\overline{m}_{s}/\overline{m}_{b}\right)^{2}}-1\right]M_{B_{s}}^{2}f_{B_{s}}^{2}B_{R_{0}}, \\ \langle B_{s}|\widetilde{R}_{2}|\overline{B}_{s}\rangle & = & \frac{2}{3}\left[\frac{M_{B_{s}}^{2}}{m_{b}^{\text{pole}\,2}}-1\right]M_{B_{s}}^{2}f_{B_{s}}^{2}B_{\widetilde{R}_{2}}, \end{array}$$

Note: $\langle B_s | R_2 | \overline{B}_s \rangle = - \langle B_s | \widetilde{R}_2 | \overline{B}_s \rangle [1 + \mathcal{O}(\Lambda_{QCD}/m_b)]$

2007 sum-rule calculation of Mannel, Pecjak, Pivovarov:

$$B_{R_2} - 1 = 0.003 \pm 0.003$$