Neutral Meson Mixing

Ulrich Nierste

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology

Lattice meets continuum: QCD calculations in flavour physics Siegen, 29 Sep - 2 Oct 2014

Contents

Introduction
$B-\bar{B}$ mixing

Mass difference

Decay Matrix

Dimuon asymmetry

Conclusions

Meson-antimeson mixing

Only K^{0}, D^{0}, B_{d}^{0}, and B_{s}^{0} mesons mix with their antiparticles:

Effects of meson-antimeson mixing ($\mathrm{M}-\overline{\mathrm{M}}$ mixing, with $M=K, D, B_{d}$, or $\left.B_{s}\right)$:

- The flavour eigenstates $|M\rangle$ and $|\bar{M}\rangle$ are no mass eigenstates.
This feature is exploited in K physics: The lifetimes of the mass eigenstates $K_{\text {long }}$ and $K_{\text {short }}$ differ by a factor of 500 .
$\Rightarrow \quad$ Make a $K_{\text {long }}$ beam by producing K 's and \bar{K} 's and wait.

Effects of meson-antimeson mixing ($\mathrm{M}-\overline{\mathrm{M}}$ mixing, with $M=K, D, B_{d}$, or $\left.B_{s}\right)$:

- The flavour eigenstates $|M\rangle$ and $|\bar{M}\rangle$ are no mass eigenstates.
- A meson produced as an $|M\rangle$ at time $t=0$ oscillates between the states $|M\rangle$ and $|M\rangle$.
This feature is exploited in the study of D, B_{d}, or B_{s} mesons.

$B-\bar{B}$ mixing in the Standard Model

$B_{q}-\bar{B}_{q}$ mixing with $q=d$ or $q=s$ involves the 2×2 matrices M and Γ.

$B-\bar{B}$ mixing in the Standard Model

$B_{q}-\bar{B}_{q}$ mixing with $q=d$ or $q=s$ involves the 2×2 matrices M and Γ.
The mass matrix element M_{12}^{q} stems from the dispersive (real) part of the box diagram, internal t.
The decay matrix element Γ_{12}^{q} stems from the absorpive (imaginary) part of the box diagram, internal c, u.

$B-\bar{B}$ mixing in the Standard Model

$B_{q}-\bar{B}_{q}$ mixing with $q=d$ or $q=s$ involves the 2×2 matrices M and Γ.
The mass matrix element M_{12}^{q} stems from the dispersive (real) part of the box diagram, internal t.
The decay matrix element Γ_{12}^{q} stems from the absorpive (imaginary) part of the box diagram, internal c, u.

3 physical quantities in $B_{q}-\bar{B}_{q}$ mixing:

$$
\left|M_{12}^{q}\right|, \quad\left|\Gamma_{12}^{q}\right|, \quad \phi_{q} \equiv \arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right)
$$

The two eigenstates found by diagonalising $M-i \Gamma / 2$ differ in their masses and widths:

$$
\begin{array}{ll}
\text { mass difference } & \Delta m_{q} \simeq 2\left|M_{12}^{q}\right|, \\
\text { width difference } & \Delta \Gamma_{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}
\end{array}
$$

The two eigenstates found by diagonalising $M-i \Gamma / 2$ differ in their masses and widths:

$$
\begin{aligned}
& \text { mass difference } \Delta m_{q} \\
& \simeq 2\left|M_{12}^{q}\right| \\
& \text { width difference } \Delta \Gamma_{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}
\end{aligned}
$$

CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

$$
a_{\mathrm{fs}}^{q}=\frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{q}\right|} \sin \phi_{q}
$$

Δm_{s} and Δm_{d}

Operator Product Expansion:

$$
M_{12}=\left(V_{t q}^{*} V_{t b}\right)^{2} C Q
$$

Local Operator:

$$
Q=\bar{q}_{L} \gamma_{\nu} b_{L} \bar{q}_{L} \gamma^{\nu} b_{L}
$$

Theoretical uncertainty of Δm_{q} dominated by matrix element:

$$
\left\langle\mathrm{B}_{q}\right| Q\left|\overline{\mathrm{~B}}_{q}\right\rangle=\frac{2}{3} M_{B_{q}}^{2} f_{B_{q}}^{2} B_{B_{q}}
$$

Standard Model: $C=C\left(m_{t}, \alpha_{s}\right)$ is well-known.
$B_{s}-\bar{B}_{s}$ mixing: CKM unitarity fixes $\left|V_{t s}\right| \simeq\left|V_{c b}\right|$. Use lattice results for $f_{B_{q}}^{2} B_{B q}$ to confront $\Delta m_{s}^{\text {exp }}$ with the Standard Model:

$$
\Delta m_{s}=\left(18.8 \pm 0.6 v_{c b} \pm 0.3_{m_{t}} \pm 0.1_{\alpha_{s}}\right) \mathrm{ps}^{-1} \frac{f_{B_{s}}^{2} B_{B_{s}}}{(220 \mathrm{MeV})^{2}}
$$

Here MS-NDR scheme for $B_{B_{q}}$ at scale m_{b}.
Often used: scheme-invariant $\widehat{B}_{B_{q}}=1.51 B_{B_{q}}$.

Recall:

$$
\Delta m_{s}=\left(18.8 \pm 0.6{V_{c b}} \pm 0.3_{m_{t}} \pm 0.1_{\alpha_{s}}\right) \mathrm{ps}^{-1} \frac{f_{B_{s}}^{2} B_{B_{s}}}{(220 \mathrm{MeV})^{2}}
$$

CKMfitter lattice averages (Moriond 2014):

$$
f_{B_{s}}=(226.5 \pm 1.1 \pm 5.4) \mathrm{MeV}, \quad B_{B_{s}}=0.87 \pm 0.01 \pm 0.02
$$

means $f_{B_{s}}^{2} B_{B_{s}}=[(212 \pm 9) \mathrm{MeV}]^{2}$ and

$$
\Delta m_{s}=(17.4 \pm 1.7) \mathrm{ps}^{-1}
$$

complying with LHCb/CDF average

$$
\Delta m_{s}^{\exp }=(17.761 \pm 0.022) \mathrm{ps}^{-1}
$$

$$
\Delta m_{s}=(17.4 \pm 1.7) \mathrm{ps}^{-1} \text { versus }
$$

$\Delta m_{s}^{\exp }=(17.761 \pm 0.022) \mathrm{ps}^{-1}$, too good to be true...
$\Delta m_{s}=(17.4 \pm 1.7) \mathrm{ps}^{-1}$ versus
$\Delta m_{s}^{\exp }=(17.761 \pm 0.022) \mathrm{ps}^{-1}$, too good to be true...
Few lattice-QCD calculations of $f_{B_{s}}^{2} B_{B_{s}}$ available!
Prediction of Δm_{s} largely relies on calculations of $f_{B_{s}}$ and the prejudice $B_{B_{s}} \simeq 0.85$.

FLAG recommends to use HPQCD'09 value

$$
f_{B_{s}} \sqrt{B_{B_{s}}}=(216 \pm 15) \mathrm{MeV}
$$

giving

$$
\Delta m_{s}=(18.2 \pm 2.6) \mathrm{ps}^{-1}
$$

Δm_{d}

$\left|V_{c b}\right|$, short-distance coefficient and some hadronic uncertainties drop out from the ratio $\Delta m_{d} / \Delta m_{s}$:

$$
\begin{gathered}
\xi^{2}=\frac{f_{B_{s}}^{2} B_{B_{s}}}{f_{B_{d}}^{2} B_{B_{d}}} \\
\frac{\Delta m_{d}}{\Delta m_{s}} \propto \frac{\left|V_{t d}\right|^{2}}{\left|V_{t s}\right|^{2}} \propto R_{t}^{2}
\end{gathered}
$$

Usual way to probe the Standard Model with Δm_{d} : Global fit to unitarity triangle.

Easier way:
Determine R_{t} from Δm_{d} :

$$
R_{t}=0.880 \frac{\xi}{1.16} \sqrt{\frac{\Delta m_{d}}{0.49 \mathrm{ps}^{-1}}} \sqrt{\frac{17 \mathrm{ps}^{-1}}{\Delta m_{s}}} \frac{0.22}{\left|V_{u s}\right|}(1+0.050 \bar{\rho})
$$

and compare with indirect determination of R_{t} from angles:

$$
\begin{gathered}
R_{t}=\frac{\sin \gamma}{\sin \alpha}=\frac{\sin (\alpha+\beta)}{\sin \alpha} \\
\beta=21.5^{\circ} \pm 0.7^{\circ}, \alpha=85.4^{\circ}+{ }_{-3.9^{\circ}}^{+4.0} \\
\Rightarrow R_{t}=0.960 \pm 0.026
\end{gathered}
$$

R_{t} from Δm_{d} :

$$
R_{t}=0.880 \frac{\xi}{1.16} \sqrt{\frac{\Delta m_{d}}{0.49 \mathrm{ps}^{-1}}} \sqrt{\frac{17 \mathrm{ps}^{-1}}{\Delta m_{s}}} \frac{0.22}{\left|V_{u s}\right|}(1+0.050 \bar{\rho})
$$

FLAG recommends Fermilab/MILC (2012): $\xi=1.268 \pm 0.063$ implying

$$
R_{t}=0.942 \pm 0.047_{\xi} \pm 0.006_{\mathrm{rest}}
$$

agrees well with $R_{t}=0.960 \pm 0.026$ from angles.
CKMfitter (Moriond 2014) global fit result:

$$
R_{t}=0.9171_{-0.0166}^{+0.0082}
$$

QCD sum rule result $\xi=1.16 \pm 0.04$ challenged by data: $R_{t}=0.86 \pm 0.03$

Decay matrix

The calculation $\Gamma_{12}^{q}, q=d$, s, is needed for the width difference $\Delta \Gamma_{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}$ and the semileptonic CP asymmetry $a_{\mathrm{fs}}^{q}=\frac{\left|r_{2}^{q}\right|}{\left|M_{12}^{q}\right|} \sin \phi_{q}$

In the Standard Model

$$
\phi_{s}=0.22^{\circ} \pm 0.06^{\circ} \quad \text { and } \quad \phi_{d}=-4.3^{\circ} \pm 1.4^{\circ} .
$$

Recalling $\phi_{q}=\arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right)$, a new physics contribution to $\arg M_{12}^{q}$ may deplete $\Delta \Gamma_{q}$ and enhance $\left|a_{\mathrm{fs}}^{q}\right|$ to a level observable at current experiments.

But: Precise data on CP violation in $B_{d} \rightarrow J / \psi K_{S}$ and $B_{s} \rightarrow J / \psi \phi$ preclude large NP contributions to $\arg \phi_{d}$ and $\arg \phi_{s}$.

Leading contribution to Γ_{12}^{s} :

Γ_{12}^{s} stems from Cabibbo-favoured tree-level $b \rightarrow c \bar{c} s$ decays, sizable new-physics contributions are impossible.

Updated Standard-Model prediction for $\Delta \Gamma_{s} / \Delta m_{s}$ in terms of hadronic parameters:

$$
\frac{\Delta \Gamma_{s}}{\Delta m_{s}} \Delta m_{s}^{\exp }=\left[0.082+0.019 \frac{\widetilde{B}_{S, B_{s}}^{\prime}}{B_{B_{s}}}-0.025 \frac{B_{R}}{B_{B_{s}}}\right] \mathrm{ps}^{-1}
$$

Here

$$
\left\langle B_{s}\right| \bar{S}_{L}^{\alpha} b_{R}^{\beta} \bar{s}_{L}^{\beta} b_{R}^{\alpha}\left|\bar{B}_{s}\right\rangle=\frac{1}{12} M_{B_{s}}^{2} f_{B_{s}}^{2} \widetilde{B}_{S, B_{s}}^{\prime}
$$

and $B_{R}=1 \pm 0.5$ parametrises the size of higher-dimension operators.

$$
\Delta r_{s}^{\mathrm{exp}}=(0.091 \pm 0.009) \mathrm{ps}^{-1}
$$

Dimuon asymmetry

DØ has measured the CP-violating quantity

$$
A_{S}=\frac{N^{++}-N^{--}}{N^{++}+N^{--}}
$$

with N^{++}and N^{--}the number of (μ^{+}, μ^{+}) and (μ^{-}, μ^{-}) pairs, respectively, resulting from (b, \bar{b}) pairs produced in $p \bar{p}$ collisions.
Non-zero A_{S} requires that at least one of the (b, b) quarks hadronises into a $B_{d, s}$ which oscillates into $\bar{B}_{d, s}$. The neutral- B sample consists of $58 \% B_{d}$ and $42 \% B_{s}$ mesons.

If all observed $\mu^{ \pm}$are from b, \bar{b} decays, A_{S} is related to the $C P$ asymmetries in flavour-specific decays $\mathrm{a}_{\mathrm{fs}}^{d, s}$ (a.k.a as semileptonic CP asymmetries) as

$$
A_{S}=0.58 \mathrm{a}_{\mathrm{fs}}^{d}+0.42 \mathrm{a}_{\mathrm{fs}}^{s} .
$$

SM prediction: $A_{S}^{\mathrm{SM}}=-(2.0 \pm 0.3) \cdot 10^{-4}$
A. Lenz, UN, CKM2010, arXiv:1102.4272

DØ finds $A_{S}<A_{S}^{S M}$. Deviations from SM prediction:

year	Ref.	deviation
2010	PRL 105, 081801 (2010)	3.2σ
2011	PRD 84, 052007 (2011)	3.9σ
2013	PRD 89, 012002 (2014)	$3.6 \sigma\left(^{*}\right)$

In (*) mixing-induced CP violation in $b \rightarrow c \bar{c} d$ is included.
\longrightarrow topic of this talk

Before LHCb

courtesy of M. Vesterinen.

Breaking news

Yesterday M. Vesterinen (LHCb) has presented

$$
a_{\mathrm{fs}}^{d}=(-0.2 \pm 1.9 \pm 3.0) \cdot 10^{-3}, \quad \text { LHCb-PAPER-2014-053 }
$$

newly obtained from $3 \mathrm{fb}^{-1}$ dataset and

$$
a_{\mathrm{fs}}^{s}=(-0.6 \pm 5.0 \pm 3.6) \cdot 10^{-3}, \quad \text { PLB 728C } 607 \text { (2014), }
$$

obtained from 2011 dataset ($1 \mathrm{fb}^{-1}$).
Results comply with the SM predictions
$a_{\mathrm{fs}}^{d, \mathrm{SM}}=-(4.1 \pm 0.6) \cdot 10^{-4}, \quad a_{\mathrm{fs}}^{s, \mathrm{SM}}=(1.9 \pm 0.3) \cdot 10^{-5}$
Beneke,Buchalla,Lenz,UN, 2003
Lenz,UN, 2006,2011

Breaking news

inofficial average, includes also preliminary
$a_{\mathrm{sl}}^{d}[\%]$ CKM2014 BaBar result $a_{\mathrm{sl}}^{d}=(-3.9 \pm 3.5 \pm$ 1.9) • 10^{-3}, courtesy of M. Vesterinen.

Discovery of Guennadi Borissov and Bruce Hoeneisen (Phys.Rev. D87, 074020 (2013)):

$$
\begin{gathered}
\bar{p} p \\
\downarrow \\
\mu^{+} X \leftarrow \bar{b} b \rightarrow \bar{B}_{d} \xrightarrow{\text { mixes }} \frac{p}{q} g_{-}(t) B_{d}+g_{+}(t) \bar{B}_{d} \rightarrow D^{+} D^{-} \\
\hookrightarrow \mu^{+} X
\end{gathered}
$$

CP violation in the interference of $B_{d}-\bar{B}_{d}$ mixing and $\left.{ }^{(} \bar{B}_{d}\right) \rightarrow D^{+} D^{-}$creates and asymmetry w.r.t.

$$
\begin{aligned}
& \bar{p} p \\
& \downarrow \\
& \mu^{-} X \leftarrow b \bar{b} \rightarrow B_{d} \xrightarrow{\text { mixes }} g_{+}(t) B_{d}+\frac{q}{p} g_{-}(t) \bar{B}_{d} \rightarrow D^{+} D^{-} \\
& \hookrightarrow \mu^{-} X
\end{aligned}
$$

Discovery of Guennadi Borissov and Bruce Hoeneisen

 (Phys.Rev. D87, 074020 (2013)):$$
\begin{gathered}
\bar{p} p \\
\downarrow \\
\mu^{+} X \leftarrow \bar{b} b \rightarrow \bar{B}_{d} \xrightarrow{\text { mixes }} \frac{p}{q} g_{-}(t) B_{d}+g_{+}(t) \bar{B}_{d} \rightarrow D^{+} D^{-} \\
\end{gathered}
$$

CP violation in the interference of $B_{d}-\bar{B}_{d}$ mixing and $\left.{ }^{(} \bar{B}_{d}\right) \rightarrow D^{+} D^{-}$creates and asymmetry w.r.t.

$$
\begin{gathered}
\bar{p} p \\
\downarrow \\
\mu^{-} X \leftarrow b \bar{b} \rightarrow B_{d} \xrightarrow{\text { mixes }} g_{+}(t) B_{d}+\frac{q}{p} g_{-}(t) \bar{B}_{d} \rightarrow
\end{gathered} \begin{aligned}
& D^{+} D^{-} \\
& \hookrightarrow \mu^{-} X
\end{aligned}
$$

This CP asymmetry is proportional to $\sin (2 \beta)$, with 2β being the phase of the $B_{d}-\bar{B}_{d}$ mixing amplitude M_{12} (in the standard phase convention in which the $b \rightarrow c \bar{c} d$ decay amplitude is (essentially) real).

These $b \rightarrow c \bar{c} d$ decays create a contribution $A_{S}^{\text {int }}$ to A_{S}. CP-even and CP-odd final state contribute with opposite sign, but:

$$
\Gamma\left(B_{\mathrm{CP}+} \rightarrow X_{c \bar{c}}\right)-\Gamma\left(B_{\mathrm{CP}-} \rightarrow X_{C \bar{c}}\right) \simeq \Delta \Gamma
$$

Dunietz,Fleischer,UN 2001; Beneke,Buchalla,Lenz,UN 2003
so that

$$
A_{s}^{\mathrm{int}}=-P_{c \rightarrow \mu} \frac{\Delta \Gamma}{\Gamma} \sin (2 \beta) \frac{x_{d}}{1+x_{d}^{2}}
$$

probability for $c \rightarrow \mu$
dilution from time integration.

Here $x_{d}=\Delta m / \Gamma$ and Γ is the total B_{d} width.

Jarlskog criterion

Within the SM CP violation requires

$$
\begin{aligned}
& \left(m_{u}^{2}-m_{c}^{2}\right)\left(m_{c}^{2}-m_{t}^{2}\right)\left(m_{u}^{2}-m_{t}^{2}\right) \times \\
& \left(m_{d}^{2}-m_{s}^{2}\right)\left(m_{s}^{2}-m_{b}^{2}\right)\left(m_{d}^{2}-m_{b}^{2}\right) \operatorname{Im}\left(V_{11} V_{21}^{*} V_{22} V_{12}^{*}\right) \neq 0
\end{aligned}
$$

$\Rightarrow \quad \mathrm{CP}$ asymmetries vanish for $m_{C}=m_{u}$.

Mass matrix M, decay matrix Γ :

$$
a_{\mathrm{fs}}^{d}=\operatorname{Im} \frac{\Gamma_{12}}{M_{12}} \propto \frac{m_{c}^{2}-m_{u}^{2}}{m_{b}^{2}}
$$

vanishes for $m_{c}=m_{u}$, while

$$
\Delta \Gamma=-\Delta m \operatorname{Re} \frac{\Gamma_{12}}{M_{12}}
$$

and $A_{S}^{\text {int }}$ does not vanish in this limit!

Mass matrix M, decay matrix Γ :

$$
a_{\mathrm{fs}}^{d}=\operatorname{Im} \frac{\Gamma_{12}}{M_{12}} \propto \frac{m_{c}^{2}-m_{u}^{2}}{m_{b}^{2}}
$$

vanishes for $m_{c}=m_{u}$, while

$$
\Delta \Gamma=-\Delta m \operatorname{Re} \frac{\Gamma_{12}}{M_{12}}
$$

and $A_{s}^{\text {int }}$ does not vanish in this limit!
$\Rightarrow \quad$ There should be a contribution with up quarks which contributes to $A_{s}^{\text {int }}$ with opposite sign.

$$
\begin{gathered}
\Gamma_{12}=-\left[\lambda_{c}^{2} \Gamma_{12}^{c c}+2 \lambda_{c} \lambda_{u} \Gamma_{12}^{u c}+\lambda_{u}^{2} \Gamma_{12}^{u u}\right] \\
\text { with } \lambda_{c}=V_{c d}^{*} V_{c b}, \lambda_{u}=V_{u d}^{*} V_{u b} \text {, and } \lambda_{t}=-\lambda_{c}-\lambda_{u}=V_{t d}^{*} V_{t b}
\end{gathered}
$$

In the SM the charm-charm contribution dominates

$$
\Delta \Gamma=-\Delta m \operatorname{Re} \frac{\Gamma_{12}}{M_{12}} \approx 2\left|\lambda_{c}\right|^{2} \Gamma_{12}^{c c}
$$

$$
\begin{aligned}
|B(t)\rangle & =g_{+}(t)|B\rangle+\frac{q}{p} g_{-}(t)|\bar{B}\rangle \\
|\bar{B}(t)\rangle & =\frac{p}{q} g_{-}(t)|B\rangle+g_{+}(t)|\bar{B}\rangle
\end{aligned}
$$

Time-dependent decay rate $\Gamma[B(t) \rightarrow f]=N_{f}|\langle f \mid B(t)\rangle|^{2}$ with phase-space factor N_{f}. Interference term in $\Gamma\left[B(t) \rightarrow X_{c \bar{c}]}\right.$:

$$
B_{c c}(t)=2 \operatorname{Re}[g_{+}^{*}(t) \frac{q}{p} g_{-}(t) \underbrace{\sum_{t \in X_{c \bar{c}}} N_{f}\langle B \mid f\rangle\langle f \mid \bar{B}\rangle}_{-\lambda_{c}^{2} \Gamma_{12}^{c c}}]
$$

$$
\begin{aligned}
|B(t)\rangle & =g_{+}(t)|B\rangle+\frac{q}{p} g_{-}(t)|\bar{B}\rangle \\
|\bar{B}(t)\rangle & =\frac{p}{q} g_{-}(t)|B\rangle+g_{+}(t)|\bar{B}\rangle
\end{aligned}
$$

Time-dependent decay rate $\Gamma[B(t) \rightarrow f]=N_{f}|\langle f \mid B(t)\rangle|^{2}$ with phase-space factor N_{f}. Interference term in $\left\lceil\left[B(t) \rightarrow X_{c \bar{c}}\right]\right.$:

$$
B_{c c}(t)=2 \operatorname{Re}[g_{+}^{*}(t) \frac{q}{p} g_{-}(t) \underbrace{\sum_{t \in X_{c \bar{c}}} N_{f}\langle B \mid f\rangle\langle f \mid \bar{B}\rangle}_{-\lambda_{c}^{2} \Gamma_{12}^{c c}}]
$$

$$
B_{c c}(t)=\Gamma_{12}^{c c} e^{-\Gamma t} \sin (\Delta m t) \operatorname{lm}\left(\frac{q}{p} \lambda_{c}^{2}\right)=\Gamma_{12}^{c c}\left|\lambda_{c}\right|^{2} e^{-\Gamma t} \sin (\Delta m t) \sin (2 \beta)
$$

The interference term in $\Gamma\left[\bar{B}(t) \rightarrow X_{c \bar{c}}\right]$ has the opposite sign. Thus the charm-charm contribution to $A_{S}^{\text {int }}$ is

$$
A_{s}^{\mathrm{int}, c \bar{c}}=-P_{c \rightarrow \mu} \int_{0}^{\infty} d t 2 B_{c c}(t)=-P_{c \rightarrow \mu} \frac{2 \Gamma_{12}^{c c}}{\Gamma}\left|\lambda_{c}\right|^{2} \sin (2 \beta) \frac{x_{d}}{1+x_{d}^{2}}
$$

Add missing up contribution from up quark, taking $m_{c}=m_{u}$ here, so that $\Gamma_{12}^{c u}=\Gamma_{12}^{c c}$:
To find $A_{s}^{\mathrm{int}, c \bar{c}}+A_{s}^{\mathrm{int}, c \bar{c}}$ from $A_{S}^{\mathrm{int}, c \bar{c}}$ simply replace

$$
\operatorname{Im}\left(\frac{q}{p} \lambda_{c}^{2}\right) \rightarrow \operatorname{Im}\left(\frac{q}{p} \lambda_{c}\left(\lambda_{c}+\lambda_{u}\right)\right)=-\operatorname{Im}\left(\frac{q}{p} \lambda_{c} \lambda_{t}\right)
$$

amounting to

$$
\left|\lambda_{c}\right|^{2} \sin (2 \beta) \rightarrow\left|\lambda_{c} \lambda_{t}\right| \sin \beta, \quad \text { smaller by factor of } 0.49!
$$

To comply with the Jarlskog criterion we need also to add $A_{S}^{\mathrm{int}, u \bar{c}}+A_{S}^{\mathrm{int}, u \bar{u}}$.
However, in our real world with $m_{c} \neq m_{u}$ the probabilities $P_{u \rightarrow \mu}$ and $P_{c \rightarrow \mu}$ are very different. μ 's from the decay chain $b \rightarrow u \rightarrow \mu$ require that e.g. a K^{+}or π^{+}decays (semi-) muonically before reaching the detector.
In the considered limit $m_{c}=m_{u}$:

$$
A_{S}^{\mathrm{int}}=-\left(P_{c \rightarrow \mu}-P_{u \rightarrow \mu}\right) \frac{2 \Gamma_{12}^{c c}}{\Gamma}\left|\lambda_{c} \lambda_{t}\right| \sin (\beta) \frac{x_{d}}{1+x_{d}^{2}}
$$

Thus the estimate in Phys.Rev. D87, 074020 (2013)

$$
A_{S}^{\text {int }}=-(4.5 \pm 1.6) 10^{-4}
$$

gets reduced to

$$
A_{S}^{\mathrm{int}}>-(2.2 \pm 0.8) 10^{-4}
$$

and the discrepancy between the D \varnothing dimuon asymmetry and the SM prediction is actually larger (by roughly 0.2σ) than the 3.6σ quoted in Phys. Rev. D 89, 012002 (2014).

Important lesson: A_{s}^{int} depends on the individual components
$\Gamma_{12}^{c c}, \Gamma_{12}^{c u}, \Gamma_{12}^{u c}$, and $\Gamma_{12}^{u u}$ in a different way than a_{fs}^{d} and $\Delta \Gamma$!

Important lesson: $A_{s}^{\text {int }}$ depends on the individual components
$\Gamma_{12}^{c c}, \Gamma_{12}^{c u}, \Gamma_{12}^{u c}$, and $\Gamma_{12}^{u u}$ in a different way than a_{fs}^{d} and $\Delta \Gamma$!
Thus the sensitivity to new physics is also different.

Important lesson: A_{s}^{int} depends on the individual components
$\Gamma_{12}^{c c}, \Gamma_{12}^{c u}, \Gamma_{12}^{u c}$, and $\Gamma_{12}^{u u}$ in a different way than a_{fs}^{d} and $\Delta \Gamma$!
Thus the sensitivity to new physics is also different. Consider a new contribution of the type

$$
\text { real coefficient } \times \lambda_{t} \times \bar{d} b(\bar{u} u+\bar{c} c+\ldots)
$$

i.e. new physics coming with a gluon/photon/Z penguin operator: The interference term with the SM tree amplitude amounts to (for $m_{C}=m_{u}$)

$$
\delta \mathrm{a}_{\mathrm{fs}}^{d} \propto \operatorname{Im} \frac{\lambda_{t}\left(\lambda_{u}+\lambda_{c}\right)}{\lambda_{t}^{2}}=-\operatorname{Im} \frac{\lambda_{t}^{2}}{\lambda_{t}^{2}}=0
$$

while

$$
\delta A_{s}^{\mathrm{int}} \propto \operatorname{lm} \frac{\lambda_{t}\left(P_{u \rightarrow \mu} \lambda_{u}+P_{c \rightarrow \mu} \lambda_{c}\right)}{\lambda_{t}^{2}} \neq 0
$$

Also $\Delta \Gamma$ will change from its $S M$ value.

Conclusions

- $B-\bar{B}$ mixing is highly sensitive to new physics and stays interesting.

Conclusions

- $B-\bar{B}$ mixing is highly sensitive to new physics and stays interesting.
- We start to see the chiral logarithms pushing lattice predictions of ξ to $\xi=1.268 \pm 0.063$ in the data. The old QCD sum rule result $\xi=1.16 \pm 0.04$ is challenged.

Conclusions

- $B-\bar{B}$ mixing is highly sensitive to new physics and stays interesting.
- We start to see the chiral logarithms pushing lattice predictions of ξ to $\xi=1.268 \pm 0.063$ in the data. The old QCD sum rule result $\xi=1.16 \pm 0.04$ is challenged.
- The LHCb error on $\Delta \Gamma_{s}$ is much smaller than the theory error now.

Conclusions

- $B-\bar{B}$ mixing is highly sensitive to new physics and stays interesting.
- We start to see the chiral logarithms pushing lattice predictions of ξ to $\xi=1.268 \pm 0.063$ in the data. The old QCD sum rule result $\xi=1.16 \pm 0.04$ is challenged.
- The LHCb error on $\Delta \Gamma_{s}$ is much smaller than the theory error now.
- There is rapid experimental progress on a_{fs}^{d} and a_{fs}^{S}.
- I agree with Borissov and Hoeneisen that the D dimuon asymmetry receives a contribution $A_{S}^{\text {int }}$ from mixing-induced CP violation in decays $B \rightarrow X \rightarrow X^{\prime} \mu$.
- I agree with Borissov and Hoeneisen that the D dimuon asymmetry receives a contribution A_{S}^{int} from mixing-induced CP violation in decays $B \rightarrow X \rightarrow X^{\prime} \mu$.
- Final states with all combinations $(c, \bar{c}),(c, \bar{u}),(u, \bar{c})$, and (u, \bar{u}) must be considered.
- I agree with Borissov and Hoeneisen that the D dimuon asymmetry receives a contribution A_{S}^{int} from mixing-induced CP violation in decays $B \rightarrow X \rightarrow X^{\prime} \mu$.
- Final states with all combinations $(c, \bar{c}),(c, \bar{u}),(u, \bar{c})$, and (u, \bar{u}) must be considered.

$$
A_{S}^{\mathrm{int}}=-\left(P_{C \rightarrow \mu}-P_{u \rightarrow \mu}\right) \frac{|\Delta \Gamma|}{\Gamma} \frac{\left|\lambda_{t}\right|}{\left|\lambda_{c}\right|} \sin (\beta) \frac{x_{d}}{1+x_{d}^{2}}
$$

is smaller in magnitude by at least a factor of 0.49 compared to the formulae used in the D \varnothing analysis, so that the discrepancy with the SM is larger than the quoted 3.6σ.

- I agree with Borissov and Hoeneisen that the $D \varnothing$ dimuon asymmetry receives a contribution $A_{S}^{\text {int }}$ from mixing-induced CP violation in decays $B \rightarrow X \rightarrow X^{\prime} \mu$.
- Final states with all combinations $(c, \bar{c}),(c, \bar{u}),(u, \bar{c})$, and (u, \bar{u}) must be considered.
-

$$
A_{S}^{\mathrm{int}}=-\left(P_{c \rightarrow \mu}-P_{u \rightarrow \mu}\right) \frac{|\Delta \Gamma|}{\Gamma} \frac{\left|\lambda_{t}\right|}{\left|\lambda_{c}\right|} \sin (\beta) \frac{x_{d}}{1+x_{d}^{2}}
$$

is smaller in magnitude by at least a factor of 0.49 compared to the formulae used in the D \varnothing analysis, so that the discrepancy with the SM is larger than the quoted 3.6σ.

- A_{s}^{int} depends differently on new physics than a_{fs}^{d}.

Slides for discussion

$\Delta \Gamma_{s}$

$$
\begin{aligned}
\frac{\Delta \Gamma_{s}}{\Delta m_{s}} \Delta m_{s}^{\exp }= & {\left[0.082 \pm 0.007+(0.019 \pm 0.001) \frac{\widetilde{B}_{S, B_{s}}^{\prime}}{B_{B_{s}}}\right.} \\
& \left.-(0.027 \pm 0.003) \frac{B_{R}}{B_{B_{s}}}\right] \mathrm{ps}^{-1}
\end{aligned}
$$

Leading power in $\Lambda_{Q C D} / m_{b}$: Only two operators:

$$
\begin{gathered}
Q=\overline{\boldsymbol{s}}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\alpha} \overline{\boldsymbol{s}}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{\beta} \\
\widetilde{Q}_{S}=\overline{\boldsymbol{s}}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta} \overline{\boldsymbol{s}}_{\beta}\left(1+\gamma_{5}\right) b_{\alpha}
\end{gathered}
$$

with colour indices α, β.
Can trade $Q_{S}=\bar{s}_{\alpha}\left(1+\gamma_{5}\right) b_{\alpha} \bar{s}_{\beta}\left(1+\gamma_{5}\right) b_{\beta}$ for the $1 / m_{b}$-suppressed operator

$$
R_{0} \equiv Q_{S}+\tilde{Q}_{S}+\frac{1}{2} Q
$$

I.e. R_{0} vanishes identically in HQET.

$1 / m_{b}$-suppressed operators

Most relevant:

$$
\widetilde{R}_{2}=\frac{1}{m_{b}^{2}} \overline{\mathbf{s}}_{\beta} \overleftarrow{D}_{\rho} \gamma^{\mu}\left(1-\gamma_{5}\right) D^{\rho} b_{\alpha} \overline{\mathbf{s}}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\beta}
$$

Any chance to tackle it on the lattice? (In HQET $D^{\rho} b \rightarrow v^{\rho} b_{v}$.) Second most relevant:

$$
R_{0} \equiv Q_{S}+\tilde{Q}_{S}+\frac{1}{2} Q
$$

Occasionally people take $\left\langle B_{s}\right| R_{0}\left|\bar{B}_{s}\right\rangle$ from lattice calculations of $\left\langle B_{s}\right| Q_{S}\left|\bar{B}_{s}\right\rangle,\left\langle B_{s}\right| \tilde{Q}_{s}\left|\bar{B}_{s}\right\rangle$, and $\left\langle B_{s}\right| Q\left|\bar{B}_{s}\right\rangle$, but to my knowledge the lattice-continuum matching is not done to order α_{s} / m_{b}.

$1 / m_{b}$-suppressed operators

$$
\begin{aligned}
\left\langle B_{s}\right| R_{0}\left|\bar{B}_{s}\right\rangle & =-\frac{4}{3}\left[\frac{M_{B_{s}}^{2}}{m_{b}^{\text {pole } 2}\left(1+\bar{m}_{s} / \bar{m}_{b}\right)^{2}}-1\right] M_{B_{s}}^{2} f_{B_{s}}^{2} B_{R_{0}} \\
\left\langle B_{s}\right| \widetilde{R}_{2}\left|\bar{B}_{s}\right\rangle & =\frac{2}{3}\left[\frac{M_{B_{s}}^{2}}{\left.m_{b}^{\text {pole } 2}-1\right] M_{B_{s}}^{2} f_{B_{s}}^{2} B_{\widetilde{R}_{2}}}\right.
\end{aligned}
$$

Note: $\left\langle B_{s}\right| R_{2}\left|\bar{B}_{s}\right\rangle=-\left\langle B_{s}\right| \widetilde{R}_{2}\left|\bar{B}_{s}\right\rangle\left[1+\mathcal{O}\left(\Lambda_{Q C D} / m_{b}\right)\right]$
2007 sum-rule calculation of Mannel, Pecjak, Pivovarov:

$$
B_{R_{2}}-1=0.003 \pm 0.003
$$

