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Meson-antimeson mixing

Only K9 0° B9, and B2 mesons mix with their antiparticles:

s u,c,t d u d,s,b c
d u,c,t S c d,s,b u
b u,c,t d b u,c,t S
d u,c,t b s u,ct b
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Effects of meson-antimeson mixing (M —M mixing, with
M= K, D, By, or Bg):
e The flavour eigenstates |M) and |M) are no mass
eigenstates.

This feature is exploited in K physics: The lifetimes of the
mass eigenstates K., and Ky, differ by a factor of 500.

= Make a Ko, beam by producing K’s and K’s and
wait.
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Effects of meson-antimeson mixing (M—M mixing, with
M= K, D, By, or Bg):

e The flavour eigenstates |M) and | M) are no mass
eigenstates.

e A meson produced as an |M) at time ¢ = 0 oscillates
between the states |M) and |M).

This feature is exploited in the study of D, By, or Bs
mesons.

Conclusions



Bq—Eq mixing with g = d or g = s involves the 2 x 2 matrices
MandT.
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B—B mixing in the Standard Model

Bq —Bq mixing with g = d or g = s involves the 2 x 2 matrices
MandT.

The mass matrix element My, stems NE q
from the dispersive (real) part of the

box diagram, internal t.

The decay matrix element '], stems
from the absorpive (imaginary) part
of the box diagram, internal ¢, u. q uct b
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B—B mixing in the Standard Model

Bq —Bq mixing with g = d or g = s involves the 2 x 2 matrices
MandT.

The mass matrix element My, stems NE q
from the dispersive (real) part of the

box diagram, internal t.

The decay matrix element '], stems
from the absorpive (imaginary) part
of the box diagram, internal ¢, u. q uct b

3 physical quantities in B;—B, mixing:

| My
M Pl oo=are ()
12
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The two eigenstates found by diagonalising M — i T /2 differ in
their masses and widths:

mass difference  Amg ~ 2|M|,
width difference  Alg ~ 2[T'{,|cos ¢q
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The two eigenstates found by diagonalising M — i T /2 differ in
their masses and widths:

mass difference  Amg ~ 2|M|,
width difference ATy ~ 2|T'{,[cos ¢q

CP asymmetry in flavor-specific decays (semileptonic CP
asymmetry):

MY, ]

? _ 112

LMY

sin ¢q



Operator Product Expansion: b q

Mz = (VigVip)? CQ
Local Operator:

Q = qumwbLqY'be
Theoretical uncertainty of Am, dominated by matrix element:

— 2
(Bq|QIBg) = §M§qf§qBBq

Standard Model: C = C(my;, as) is well-known.
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Bs—Bs mixing: CKM unitarity fixes | Vis| ~ |Vyp|. Use lattice
results for fgq Bg, to confront Am™" with the Standard Model:
fés Bg,

Ams = (188+0.6y,+03, +0.1 ) ps”’ 220 MoV

Here MS-NDR scheme for B, at scale mj,.
Often used: scheme-invariant @Bq =1.51Bg,.
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Recall:

fés Bg,

Ams - ( 188 + 06 Vcb + 03mt + 01 as) pSi‘I m

CKMfitter lattice averages (Moriond 2014):
fa, = (226.5+ 1.1 +54)MeV,  Bg, = 0.87 +0.01 £0.02
means f3 Bg, = [(212 + 9) MeV]* and
Ams = (17.4+1.7)ps™’
complying with LHCb/CDF average

AmZP® = (17.761 £ 0.022) ps .
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Amg = (17.4 +1.7)ps~" versus
Amg? = (17.761 + 0.022) ps~', too good to be true...
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Amg = (17.4 +1.7)ps~" versus
Amg? = (17.761 + 0.022) ps~', too good to be true...

Few lattice-QCD calculations of f3_Bp, available!

Prediction of Ams largely relies on calculations of fz, and the
prejudice Bpg, ~ 0.85.

FLAG recommends to use HPQCD’09 value
st\/ BBS = (216 + 15) MeV

giving
Amg = (182 +2.6)ps~’
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Amy

|Vep|, short-distance coefficient and some hadronic
uncertainties drop out from the ratio Amy/Ams:

»  15.Bs A=)
féd Bsg,
R R

Amg Vil 2 ) t

x x Rj
Amg | Vts‘2

Y B
C=(0,0) B=(1,0)

Usual way to probe the Standard Model with Amy: Global fit to
unitarity triangle.
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Easier way:
Determine R; from Amy:

' A 17ps—1 0.22
R; = 0.880 5\/ i \/ ps™" 022 1 | 0.0507)

1161/ 0.49ps—1\ Ams |Vl
and compare with indirect determination of R; from angles:

_siny sin(a + )

t — f . Az@!ﬁ)
SIN« SIN «
B=215°40.7°, a = 854° 59, " Re
= R;=0.960 + 0.026 v B

C=(0,0) B=(1,0)
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R from Amy:

£ Amy 17ps—1 0.22 N
R; — 0.880 1 +0.050
t=088 1.16\/0.49ps—1\/ Ams Vo O F P)

FLAG recommends Fermilab/MILC (2012): ¢ = 1.268 4+ 0.063

implying
Rt = 0942 i 00475 i 0-006rest

agrees well with R; = 0.960 + 0.026 from angles.
CKMfitter (Moriond 2014) global fit result:

R = 0.917170.9082

QCD sum rule result ¢ = 1.16 + 0.04 challenged by data:
R; = 0.86 +0.03
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Decay matrix

The calculation F?Z, g = d, s, is needed for

the width difference Al ~ 2|I{,| cos ¢4
q
and the semileptonic CP asymmetry a?s = “Ar/;g“ Sin ¢q
12

In the Standard Model
0s =0.22° £ 0.06° and ¢4=—4.3°+1.4°,

q
Recalling ¢4 = arg (—%) a new physics contribution to
12
arg Mfz may deplete Al'; and enhance ]a?s\ to a level
observable at current experiments.

But: Precise data on CP violation in By — J/¢YKs and
Bs — J /v ¢ preclude large NP contributions to arg ¢4 and

arg ¢s.
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Leading contribution to I'{,:

'{, stems from Cabibbo-favoured tree-level b — ccs decays,
sizable new-physics contributions are impossible.
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Updated Standard-Model prediction for Al's/Ams in terms of
hadronic parameters:

Als ESB Br 1
AmgP = 2 1 = —0.025—

A Mg 0.08 +OOQBBS 0.0 SBBS ps

Here
= 1B =B ha R 1 2
(Bs|s{ b s bg|Bs) = 12M f3,Bs B,

and Bg = 1 £+ 0.5 parametrises the size of higher-dimension
operators.

AT = (0.091 + 0.009) ps~
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Dimuon asymmetry

D@ has measured the CP-violating quantity

N++ — N——

As= NN

with N** and N~ the number of (", ") and (., ) pairs,
respectively, resulting from (b, b) pairs produced in pp
collisions.

Non-zero As requires that at least one of the (b, b) quarks
hadronises into a B, s which oscillates into Bd’s. The neutral-B
sample consists of 58% B, and 42% Bs mesons.
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If all observed .+ are from b, b decays, Asis related to the CP
asymmetries in flavour-specific decays ag’s (a.k.aas
semileptonic CP asymmetries) as

As = 0.58ag +0.42a.
SM prediction: AP = —(2.0+0.3) - 10*
A. Lenz, UN, CKM2010, arXiv:1102.4272
D@ finds As < AYM. Deviations from SM prediction:

year |Ref. | deviation
2010 |PRL 105, 081801 (2010) |3.2¢0
2011 |PRD 84, 052007 (2011) [3.9¢
2013 | PRD 89, 012002 (2014) |3.60 ()

In (*) mixing-induced CP violation in b — ccd is included.
— topic of this talk
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Before LHCb
Q\T " Standard Model
T
-2
- DO p®uvx
3 BaBar D'*L;:
BaBar i1
| Belle i
4= L
-3 -2 -1 0 1

courtesy of M. Vesterinen.
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Breaking news

Yesterday M. Vesterinen (LHCb) has presented
al =(-024+19+3.0)-10"%,  LHCb-PAPER-2014-053,
newly obtained from 3 fb~—' dataset and
al =(-06+50+36)-10"2,  PLB728C 607 (2014),

obtained from 2011 dataset (1 fb~ ).
Results comply with the SM predictions

a®™M — _(4.1+06)-107%, &M =(1.9+40.3)-107°

Beneke,Buchalla,Lenz,UN, 2003
Lenz,UN, 2006,2011
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Breaking news

I Sltalndlarld M(;dflﬂ I

208 E
R ]
F - g LHCb D"y ]
A o DO p™uvx —
r A BaBar p'iv -
r BaBar i/ 7
_ | Belle # | ]
_4 ! 1 1 1 ! 1 1 1 ! 1 1 1 1 1 !
-3 -2 -1 0 1
o : _ d [o
inofficial average, includes also preliminary ag [%]

CKM2014 BaBar result aJ = (—3.9 + 3.5 &
1.9)- 1073, courtesy of M. Vesterinen.
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Discovery of Guennadi Borissov and Bruce Hoeneisen
(Phys.Rev. D87, 074020 (2013)):

pp
i}
pX « b b — By ™5 2g_(1)By+g.(t)By — DD~
_ — utX
CP violation in the interference of By—By mixing and
B, D*D~ creates and asymmetry w.r.t.
pp
{
p~X « b b — By ™5 g, (t)By+ dg_()Bg— DTD"
= u- X
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Discovery of Guennadi Borissov and Bruce Hoeneisen
(Phys.Rev. D87, 074020 (2013)):

pp
{
pX « b b — By ™5 2g_(1)By+g.(t)By — DD~
B — utX
CP violation in the interference of By—By mixing and
(B(; — DD~ creates and asymmetry w.r.t.
pp
{
p~X « b b — By ™5 g, (t)By+ dg_()Bg— DTD"
—u~ X
This CP asymmetry is proportional to sin(2/3), with 23 being the
phase of the B, —B4 mixing amplitude M, (in the standard

phase convention in which the b — ccd decay amplitude is
(essentially) real).
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These b — ccd decays create a contribution Aig‘ to As.
CP-even and CP-odd final state contribute with opposite sign,
but:

[(Bepy — Xeg) — M(Bep— — Xgg) ~ AT

Dunietz,Fleischer,UN 2001; Beneke,Buchalla,Lenz,UN 2003

so that
in Ar . Xd
/ T N
probability CP phase dilution from
forc — u time integration.

Here x, = Am/I and I is the total By, width.



Within the SM CP violation requires
(mf — m3)(mG — m7)(mf — m7)x

(m§ — m2)(m3 — m2)(m§ — m3)Im (V41 V3 Voo Vi) # 0

= CP asymmetries vanish for m, = m,.
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Mass matrix M, decay matrix I':

vanishes for m, = my, while

P
Al=—-AmRe —=
M2

and A" does not vanish in this limit!

Conclusions
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Mass matrix M, decay matrix I':

vanishes for m, = my, while

P
Al=—-AmRe —=
M2

and A" does not vanish in this limit!
= There should be a contribution with up quarks which
contributes to A" with opposite sign.
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Mg =— | A2T§5 + 2Ac A T4 + ASTYY

In the SM the charm-charm contribution dominates

AT = —AmRe /\T ~ 2| \e|2T$5
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B(t)) = g+(t)B>+Zg_(t>|B>,

By = Z9-(01B)+ g:(1)B).
Time-dependent decay rate ['[B(t) — f] = N;|(f|B(t))|? with

phase-space factor ;.
Interference term in I'[B(t) — Xl:

Beo(t) = 2Re |g1(0)70-(1) S Ni(BIN(f(B)
feXss

2rce
*)‘cr12
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g:(1)|B) + Zg_(t>|8>,

B(t)) = Zg(t>8>+ 9. (1)|B).

Time-dependent decay rate ['[B(t) — f] = N;|(f|B(1))|?> with
phase-space factor ;.
Interference term in I'[B(t) — Xl:

Beo(t) = 2Re |g1(0)70-(1) S Ni(BIN(f(B)

fGXcE

2rce
*)‘cr12

Bee(t) = ¢5e "t sin(Amt) Im (g/\%> = T%5|\c[2e " sin(Amt) sin(23)
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The interference term in I[B(t) — X,5] has the opposite sign.
Thus the charm-charm contribution to Aigt is

Xg
2
1 X5

o o0 2res .
AL = P, /0 at2Bg(t) = — Py, % [A\cl? sin(2)
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Add missing up contribution from up quark, taking m, = my
here, so that I'f; = I'{5: B
To find AZ"“C + AZ"Y from AZ" simply replace

2¢) - (3 )=-m(32ex)
Im{2ZXs ) = Im [ oM\ + X =—Im ([ =\
(pc Trelre+ ) Treh

amounting to

Ae|?sin(23) — [AcAi|sinB,  smaller by factor of 0.49!
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To comply with the Jarlskog criterion we need also to add
Aint,uE + Aint,UU

S .S ’ . agage
However, in our real world with m. # m,, the probabilities P,
and P._,, are very different. ;/'s from the decay chain
b — u — u require that e.g. a K™ or 7 decays (semi-)
muonically before reaching the detector.
In the considered limit m, = my:

. 2 CC
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Thus the estimate in Phys.Rev. D87, 074020 (2013)
i~ _(45+1.6)107*

gets reduced to
it > (22+0.8)10°*

and the discrepancy between the D& dimuon asymmetry and
the SM prediction is actually /arger (by roughly 0.20) than the
3.60 quoted in Phys. Rev. D 89, 012002 (2014).
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Important lesson: Aigt depends on the individual components
rgs, gy, s, and {3 in a different way than ag and ATl'!
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Important lesson: Aigt depends on the individual components
r§s, 9, I'{s, and 'Yy in a different way than ag and ATl

Thus the sensitivity to new physics is also different.



Introduction B—B mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions

Important lesson: Ai,gt depends on the individual components

r§s, 9, I'{s, and 'Yy in a different way than ag and ATl

Thus the sensitivity to new physics is also different. Consider a
new contribution of the type

real coefficient x \; x db(Gu +¢c + ...),

i.e. new physics coming with a gluon/photon/Z penguin
operator: The interference term with the SM tree amplitude
amounts to (for m; = my)

PVOVESSY \2
5agxlmwz—lm—; -0
/\t /\t
while
5A§Sm ~ Im /\t(Pu—m/\u + PC—>/1)\C) # 0.

AF

Also AT will change from its SM value.



e B—B mixing is highly sensitive to new physics and stays
interesting.
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Conclusions

e BB mixing is highly sensitive to new physics and stays
interesting.

o We start to see the chiral logarithms pushing lattice
predictions of £ to £ = 1.268 4+ 0.063 in the data. The old
QCD sum rule result ¢ = 1.16 + 0.04 is challenged.
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Conclusions

e BB mixing is highly sensitive to new physics and stays
interesting.

o We start to see the chiral logarithms pushing lattice
predictions of £ to £ = 1.268 4+ 0.063 in the data. The old
QCD sum rule result ¢ = 1.16 + 0.04 is challenged.

e The LHCb error on Al s is much smaller than the theory
error Now.
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Conclusions

e BB mixing is highly sensitive to new physics and stays
interesting.

o We start to see the chiral logarithms pushing lattice
predictions of £ to £ = 1.268 4+ 0.063 in the data. The old
QCD sum rule result ¢ = 1.16 + 0.04 is challenged.

e The LHCb error on Al s is much smaller than the theory
error Now.

e There is rapid experimental progress on a¢ and ag.

fs
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* | agree with Borissov and Hoeneisen that the DG dimuon
asymmetry receives a contribution AZ' from
mixing-induced CP violation in decays B — X — X'p.



Introduction B—B mixing Mass difference Decay Matrix Dimuon asymmetry Conclusions

* | agree with Borissov and Hoeneisen that the DG dimuon
asymmetry receives a contribution AZ' from
mixing-induced CP violation in decays B — X — X'p.

e Final states with all combinations (c, ¢), (¢, u), (u, c), and
(u,u) must be considered.
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* | agree with Borissov and Hoeneisen that the DG dimuon
asymmetry receives a contribution AZ' from
mixing-induced CP violation in decays B — X — X'p.

e Final states with all combinations (c, ¢), (¢, u), (u, c), and
(u,u) must be considered.

- AT N .,
M Al

Xd
1+ x5
is smaller in magnitude by at least a factor of 0.49
compared to the formulae used in the DO analysis, so that

the discrepancy with the SM is larger than the quoted 3.65.
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e | agree with Borissov and Hoeneisen that the D@ dimuon
asymmetry receives a contribution Ai,gt from
mixing-induced CP violation in decays B — X — X'p.

e Final states with all combinations (c, ¢), (¢, u), (u, c), and
(u,u) must be considered.

- AT N .,
M Al

Xg

1+ x5

is smaller in magnitude by at least a factor of 0.49
compared to the formulae used in the DO analysis, so that
the discrepancy with the SM is larger than the quoted 3.65.

« Al depends differently on new physics than a?.
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Slides for discussion
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Al
Amg

exp B/S,Bs
AmgP = [0.082+0.007 + (0.019 + 0.001 )5
Bs

Br

~(0.027 £ 0.003) ] ps~
Bg,

Leading power in Aqcp/mp: Only two operators:
Q = Sa7u(1 —5)ba Sp" (1 — 75)bg

Qs = 8a(1 +75)bs S5(1 + 5)ba
with colour indices «, 5.
Can trade Qs = S.(1 + 75)ba Ss(1 + 75)bs for the
1/my-suppressed operator

- 1
Ry=Qs + Qs + §Q
l.e. Ry vanishes identically in HQET.
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1/my-suppressed operators

Most relevant:

~ 1 _ _

Ro = mig Sp Dpﬂ/u“ - “/S)pra Sa'\/;t(‘l - ﬂ//S)bﬁ
Any chance to tackle it on the lattice? (In HQET Db — v*b,.)
Second most relevant:

. 1
Ro=Qs + Qs + EQ
Occasionally people take (Bs|Ro|Bs) from lattice calculations of

(Bs|Qs|Bs), (Bs|Qs|Bs), and (Bs|Q|Bs), but to my knowledge
the lattice-continuum matching is not done to order as/my,.



2
Mz,

(Bs|Ro|Bs) = — — 1| M2_f2 Bg,,
s Ds 0

mee? (1 + s /mp)?

3
= 5 2 Mgs o 2
(BJRelBs) = 3 —1| M3y,

Note: (Bs|Re|Bs) = —(Bs|Re[Bs) [1 + O(Aacp/mb)]
2007 sum-rule calculation of Mannel, Pecjak, Pivovarov:

Bg, —1 =0.003 +0.003
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