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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535 ± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,
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Figure 3: The SU(3) breaking quantities ξ and BBs/BBd
[values in Table 4 and Eq. (126)].

differs from the new value by about two standard deviations. Dimensionless quantities are, of
course, affected by a change in r1 only through the inputs, which are a subdominant source
of uncertainty. The scale uncertainty itself is also subdominant in the error budget, and this
change therefore does not affect HPQCD 09’s results for fBq

√
BBq outside of the total error.

The RBC/UKQCD collaboration has presented a result for the SU(3) breaking ratio ξ in
Ref. [55] using a static-limit action on Nf = 2 + 1 domain wall ensembles at a single lattice
spacing a ≈ 0.11 fm with a minimum pion mass of approximately 430 MeV. They use both
HYP and APE smearing for the static-limit action and one-loop mean field improved lattice
perturbation theory to renormalize the static-limit four-quark operators. Effects of O(1/mh)
are not included in the static-limit action and operators, but Ref. [55] includes an estimate of
this effect via power counting as O ((ms − md)/mb) in the error budget. The statistical errors
in this work are significant (∼ 5−6%), as are the chiral extrapolation errors (∼ 7%, estimated
from the difference between fits using NLO SU(2) HMχPT and a linear fit function), due to
the rather large pion masses used in this in this work. With data at only one lattice spacing,
discretization errors cannot be estimated from the data, but a power counting estimate of
this error of 4% is included in the systematic error budget. With only one lattice spacing
this result does not enter our averages. The RBC/UKQCD collaboration reported at Lattice
2013 [57] that they are extending this study, using HYP and HYP2 smearings for the static-
limit action, smaller pion masses, larger volumes and two lattice spacings. The conference
proceedings [57], however, did not appear until after the closing deadline and is therefore not
included in this review.

Another calculation of the SU(3) breaking ratio ξ is presented by the Fermilab Lattice
and MILC collaborations in Ref. [66] (FNAL/MILC 12). The calculation uses the Fermi-
lab method for the b quarks together with Asqtad light and strange valence quarks on a
subset of the MILC Asqtad Nf = 2 + 1 ensembles, including lattice spacings in the range
a ≈ 0.09− 0.12 fm and a minimum RMS pion mass of approximately 320 MeV. This analysis
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(1.5) at next-to-leading order (NLO) by

B̂Bq = [αs(µ)]−6/23

[
1 +

αs(µ)

4π
J5

]
BBq(µ) , (1.6)

where J5 is known in both MS-NDR (naive dimensional regularization) and MS-HV (’t Hooft-
Veltman) schemes [31]. Bag parameters have traditionally been used to measure the de-
viation of the four-fermion operator matrix elements from their vacuum insertion values,
BB = 1.

The SU(3)-breaking parameter ξ can be written in terms of decay constants and bag
parameters

ξ =
fBs

√
BBs

fBd

√
BBd

. (1.7)

Many of the uncertainties that affect the theoretical calculation of the decay constants and
bag parameters cancel totally or partially in this ratio, leaving the chiral extrapolation as
the dominant error. Hence, ξ and the combination of CKM matrix elements related to it,
can be determined with a significantly smaller error than the individual matrix elements.

The hadronic matrix elements in Eq. (1.5) encode the nonperturbative physics of the
problem and are best calculated using lattice QCD. Our current knowledge of them limits
the accuracy with which the CKM matrix elements appearing in Eq. (1.4) can be determined
from the experimental measurements of ∆Ms(d). In particular, the uncertainty associated
with the calculation of ξ is one of the main limiting factors in UT analyses, so improvement
in the knowledge of ξ is crucial to disentangle the origin of the 2–3σ tension.

There are two 2 + 1 unquenched lattice calculations of the ratio ξ in the literature. One
is by the HPQCD collaboration [32], which quotes the value ξ = 1.258(33). The other is an
exploratory study by the RBC and UKQCD collaborations [33] on a single lattice spacing
and using the static limit for the bottom quark; their result is ξ = 1.13(12). In this paper,
we report a lattice calculation of ξ at the few percent level.

Preliminary results related to the work here were presented in [34–37]. In Ref. [34], the
simulation and correlator fitting methods were described using data for one lattice spacing,
while Refs. [35, 36] focused on the discussion of statistical and fitting errors, and the chiral
extrapolation method. In Ref. [37] we studied the matching method and the heavy-quark
discretization errors.

The primary difference between this work and the HPQCD calculation in Ref. [32] is
the treatment of the valence b quarks. The HPQCD collaboration uses lattice NRQCD [38]
while we employ the clover action [39] with the Fermilab interpretation [40]. An advantage
of the Fermilab method is that it can also be efficiently used to simulate charm quarks, so
the analysis performed in this work can be easily extended to the study of the short-distance
contributions to D0-D̄0 mixing. Although in the case of neutral D mixing the long-distance
contributions are believed to be dominant, a calculation of the short-distance contributions
nevertheless can provide valuable constraints on extensions of the SM [41].

In order to achieve the few-percent level of precision required by phenomenology, we use
lattice QCD simulations with realistic sea quarks. In particular, we employ a subset of the
MILC configurations with 2+1 flavors of asqtad sea quarks [42–44]. In the valence sector,
we use the same staggered asqtad action to simulate the light quarks. The configurations
we use in this analysis were generated using the fourth-root procedure for eliminating extra
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Experimental error on ∆md , ∆ms ≈ 0.5%

Figure 2: Neutral B and Bs meson mixing matrix elements and bag parameters [values in
Table 3 and Eqs. (124), (125)].

The ETM collaboration has presented their first results for B-mixing quantities with
Nf = 2 sea quarks in Refs. [36, 65] (ETM 12A, 12B) using ensembles at three lattice spacings
in the range a ≈ 0.065−0.098 fm with a minimum pion mass of 270 MeV. Additional ensembles
at a ≈ 0.054 fm are included in ETM 13B [53]. The valence and sea quarks are simulated with
two different versions of the twisted-mass Wilson fermion action. The heavy-quark masses are
in the charm region and above while keeping amh

<∼ 0.6 for ETM 12A and 12B. Larger masses
up to amh

<∼ 0.85 are used for ETM 13B. In this series of calculations the ratio method first
developed for B-meson decay constants (see Appendix A.1.3 and Section 8.1) is extended
to B-meson mixing quantities. ETM again constructs ratios of B-mixing matrix elements
(now called ωd(s)) that are equal to unity in the static limit, including also an analogous
ratio for ξ. The renormalization of the four-quark operator is calculated nonperturbatively in
the RI’/MOM scheme. As an intermediate step for the interpolation to the physical b-quark
mass, these ratios include perturbative matching factors to match the four-quark operator
from QCD to HQET; these include tree-level and leading log contributions in ETM 12A and
12B, and additionally next-to-leading-log contributions in ETM 13B. Similar to their decay
constant analysis, ETM analyses the SU(3) breaking ratio of ratios, ωs/ωℓ, and combines it
with ωs to obtain BBd

. The data are interpolated to a fixed set of heavy-quark reference
masses on all ensembles, and subsequently extrapolated to the continuum and to the physical
light-quark masses in a combined fit. The interpolation to the physical b-quark mass is
linear or quadratic in the inverse of the heavy-quark mass. While ETM 13B reports RGI
bag parameters, ETM 12A and 12B report only BB(mb)

MS,NDR at mb = 4.35 GeV. Taking

αs(MZ) = 0.1184 [67], we apply an RGI conversion factor of B̂B/BB(mb)
MS,NDR = 1.521

to obtain the B̂B values quoted in Table 3. The observed discretization effects (as measured
by the percentage difference between the lattice data at the smallest lattice spacing and the
continuum extrapolated results) are <∼ 1% over the range of heavy-quark masses used in their
simulations. As a result, the dominant error on the bag parameters and on the ratio of bag
parameters is the combined statistical uncertainty, whereas the dominant error on the SU(3)
breaking ratio ξ is due to the chiral extrapolation. Because these studies appear either in
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uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
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Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535 ± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,

June 18, 2012 16:19

ε' / ε

14 11. CKM quark-mixing matrix

γ

γ

α

α

dmΔ
Kε

Kε

smΔ & dmΔ

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at CL > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535 ± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,

June 18, 2012 16:19

ε' / ε

14 11. CKM quark-mixing matrix

γ

γ

α

α

dmΔ
Kε

Kε

smΔ & dmΔ

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at CL > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535 ± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,

June 18, 2012 16:19

ε' / ε

14 11. CKM quark-mixing matrix

γ

γ

α

α

dmΔ
Kε

Kε

smΔ & dmΔ

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at CL > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535 ± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,

June 18, 2012 16:19

ε' / ε

Figure 3: The SU(3) breaking quantities ξ and BBs/BBd
[values in Table 4 and Eq. (126)].

differs from the new value by about two standard deviations. Dimensionless quantities are, of
course, affected by a change in r1 only through the inputs, which are a subdominant source
of uncertainty. The scale uncertainty itself is also subdominant in the error budget, and this
change therefore does not affect HPQCD 09’s results for fBq

√
BBq outside of the total error.

The RBC/UKQCD collaboration has presented a result for the SU(3) breaking ratio ξ in
Ref. [55] using a static-limit action on Nf = 2 + 1 domain wall ensembles at a single lattice
spacing a ≈ 0.11 fm with a minimum pion mass of approximately 430 MeV. They use both
HYP and APE smearing for the static-limit action and one-loop mean field improved lattice
perturbation theory to renormalize the static-limit four-quark operators. Effects of O(1/mh)
are not included in the static-limit action and operators, but Ref. [55] includes an estimate of
this effect via power counting as O ((ms − md)/mb) in the error budget. The statistical errors
in this work are significant (∼ 5−6%), as are the chiral extrapolation errors (∼ 7%, estimated
from the difference between fits using NLO SU(2) HMχPT and a linear fit function), due to
the rather large pion masses used in this in this work. With data at only one lattice spacing,
discretization errors cannot be estimated from the data, but a power counting estimate of
this error of 4% is included in the systematic error budget. With only one lattice spacing
this result does not enter our averages. The RBC/UKQCD collaboration reported at Lattice
2013 [57] that they are extending this study, using HYP and HYP2 smearings for the static-
limit action, smaller pion masses, larger volumes and two lattice spacings. The conference
proceedings [57], however, did not appear until after the closing deadline and is therefore not
included in this review.

Another calculation of the SU(3) breaking ratio ξ is presented by the Fermilab Lattice
and MILC collaborations in Ref. [66] (FNAL/MILC 12). The calculation uses the Fermi-
lab method for the b quarks together with Asqtad light and strange valence quarks on a
subset of the MILC Asqtad Nf = 2 + 1 ensembles, including lattice spacings in the range
a ≈ 0.09− 0.12 fm and a minimum RMS pion mass of approximately 320 MeV. This analysis
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(1.5) at next-to-leading order (NLO) by

B̂Bq = [αs(µ)]−6/23

[
1 +

αs(µ)

4π
J5

]
BBq(µ) , (1.6)

where J5 is known in both MS-NDR (naive dimensional regularization) and MS-HV (’t Hooft-
Veltman) schemes [31]. Bag parameters have traditionally been used to measure the de-
viation of the four-fermion operator matrix elements from their vacuum insertion values,
BB = 1.

The SU(3)-breaking parameter ξ can be written in terms of decay constants and bag
parameters

ξ =
fBs

√
BBs

fBd

√
BBd

. (1.7)

Many of the uncertainties that affect the theoretical calculation of the decay constants and
bag parameters cancel totally or partially in this ratio, leaving the chiral extrapolation as
the dominant error. Hence, ξ and the combination of CKM matrix elements related to it,
can be determined with a significantly smaller error than the individual matrix elements.

The hadronic matrix elements in Eq. (1.5) encode the nonperturbative physics of the
problem and are best calculated using lattice QCD. Our current knowledge of them limits
the accuracy with which the CKM matrix elements appearing in Eq. (1.4) can be determined
from the experimental measurements of ∆Ms(d). In particular, the uncertainty associated
with the calculation of ξ is one of the main limiting factors in UT analyses, so improvement
in the knowledge of ξ is crucial to disentangle the origin of the 2–3σ tension.

There are two 2 + 1 unquenched lattice calculations of the ratio ξ in the literature. One
is by the HPQCD collaboration [32], which quotes the value ξ = 1.258(33). The other is an
exploratory study by the RBC and UKQCD collaborations [33] on a single lattice spacing
and using the static limit for the bottom quark; their result is ξ = 1.13(12). In this paper,
we report a lattice calculation of ξ at the few percent level.

Preliminary results related to the work here were presented in [34–37]. In Ref. [34], the
simulation and correlator fitting methods were described using data for one lattice spacing,
while Refs. [35, 36] focused on the discussion of statistical and fitting errors, and the chiral
extrapolation method. In Ref. [37] we studied the matching method and the heavy-quark
discretization errors.

The primary difference between this work and the HPQCD calculation in Ref. [32] is
the treatment of the valence b quarks. The HPQCD collaboration uses lattice NRQCD [38]
while we employ the clover action [39] with the Fermilab interpretation [40]. An advantage
of the Fermilab method is that it can also be efficiently used to simulate charm quarks, so
the analysis performed in this work can be easily extended to the study of the short-distance
contributions to D0-D̄0 mixing. Although in the case of neutral D mixing the long-distance
contributions are believed to be dominant, a calculation of the short-distance contributions
nevertheless can provide valuable constraints on extensions of the SM [41].

In order to achieve the few-percent level of precision required by phenomenology, we use
lattice QCD simulations with realistic sea quarks. In particular, we employ a subset of the
MILC configurations with 2+1 flavors of asqtad sea quarks [42–44]. In the valence sector,
we use the same staggered asqtad action to simulate the light quarks. The configurations
we use in this analysis were generated using the fourth-root procedure for eliminating extra

4

�

Experimental error on ∆md , ∆ms ≈ 0.5%

Figure 2: Neutral B and Bs meson mixing matrix elements and bag parameters [values in
Table 3 and Eqs. (124), (125)].

The ETM collaboration has presented their first results for B-mixing quantities with
Nf = 2 sea quarks in Refs. [36, 65] (ETM 12A, 12B) using ensembles at three lattice spacings
in the range a ≈ 0.065−0.098 fm with a minimum pion mass of 270 MeV. Additional ensembles
at a ≈ 0.054 fm are included in ETM 13B [53]. The valence and sea quarks are simulated with
two different versions of the twisted-mass Wilson fermion action. The heavy-quark masses are
in the charm region and above while keeping amh

<∼ 0.6 for ETM 12A and 12B. Larger masses
up to amh

<∼ 0.85 are used for ETM 13B. In this series of calculations the ratio method first
developed for B-meson decay constants (see Appendix A.1.3 and Section 8.1) is extended
to B-meson mixing quantities. ETM again constructs ratios of B-mixing matrix elements
(now called ωd(s)) that are equal to unity in the static limit, including also an analogous
ratio for ξ. The renormalization of the four-quark operator is calculated nonperturbatively in
the RI’/MOM scheme. As an intermediate step for the interpolation to the physical b-quark
mass, these ratios include perturbative matching factors to match the four-quark operator
from QCD to HQET; these include tree-level and leading log contributions in ETM 12A and
12B, and additionally next-to-leading-log contributions in ETM 13B. Similar to their decay
constant analysis, ETM analyses the SU(3) breaking ratio of ratios, ωs/ωℓ, and combines it
with ωs to obtain BBd

. The data are interpolated to a fixed set of heavy-quark reference
masses on all ensembles, and subsequently extrapolated to the continuum and to the physical
light-quark masses in a combined fit. The interpolation to the physical b-quark mass is
linear or quadratic in the inverse of the heavy-quark mass. While ETM 13B reports RGI
bag parameters, ETM 12A and 12B report only BB(mb)

MS,NDR at mb = 4.35 GeV. Taking

αs(MZ) = 0.1184 [67], we apply an RGI conversion factor of B̂B/BB(mb)
MS,NDR = 1.521

to obtain the B̂B values quoted in Table 3. The observed discretization effects (as measured
by the percentage difference between the lattice data at the smallest lattice spacing and the
continuum extrapolated results) are <∼ 1% over the range of heavy-quark masses used in their
simulations. As a result, the dominant error on the bag parameters and on the ratio of bag
parameters is the combined statistical uncertainty, whereas the dominant error on the SU(3)
breaking ratio ξ is due to the chiral extrapolation. Because these studies appear either in
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B̂Bd
: RGI

Source of error ξ FNAL/MILC12 HPQCD09 ETM 13 fBd

√
B̂d FNAL/MILC11 HPQCD09 ETM 13

Statistics and Chiral 4.9% 2.0% 1.3% 7% 4.1% 3.8%
Matching to Cont. 0.5% 0.7% . . . 4% 4.0% 0.2%

Discretization 0.5% 0.5% 1.1% 2% 3.2% 2.3%

Total 5.0% 2.6% 2.5% 10% 7.1% 4.5%
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535 ± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,
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Error on εK dominated by |Vcb|4

For example (Kronfeld’s talk): arXiv:1403.0635

TABLE X. Final error budget for hA1(1) where each error is discussed in the text. Systematic

errors are added in quadrature and combined in quadrature with the statistical error to obtain the

total error.

Uncertainty hA1(1)

Statistics 0.4%

Scale (r1) error 0.1%

�PT fits 0.5%

gD⇤D⇡ 0.3%

Discretization errors 1.0%

Perturbation theory 0.4%

Isospin 0.1%

Total 1.4%

between the D⇤0 and the D⇤+ is a much smaller e↵ect. Thus, we quote an error of 0.1% due
to isospin e↵ects.

VIII. ELECTROWEAK EFFECTS

In this section, we discuss the electroweak and electromagnetic e↵ects in the semileptonic
rate, Eq. (1.3). They do not enter the lattice-QCD calculation but are needed, in addition
to the hadronic form factor F(1) = hA1(1), to obtain |Vcb|. The factor ⌘EW (written as ⌘em

in Ref. [1]) takes the form [10]

⌘EW = 1 +
↵

⇡


ln

MW

µ
+ tan2 ✓W

M2
W

M2
Z � M2

W

ln
MZ

MW

�
, (8.1)

where the weak mixing angle is specified via cos ✓W = g2/(g
2
2 + g2

1)
1/2; g2 and g1 are the

gauge couplings of SU(2)⇥U(1). The first (second) term stems from W -photon (W -Z) box
diagrams plus associated parts from vertex and wavefunction renormalization. This form
assumes that GF in Eq. (1.3) is defined via the muon lifetime, which is the case for GF

in Ref. [1]. In the SM, MW = MZ cos ✓W , and the bracket simplifies to ln(MZ/µ). With
this assumption, taking the factorization scale µ = MB± , and varying µ by a factor of 2 to
estimate the error, one finds

⌘EW,SM = 1.00662(16). (8.2)

To reiterate, it is theoretically cleaner not to include this factor in F(w). This way makes
it more straightforward to study or remove the µ dependence in future work.

In the experiments [76], the charged-lepton energy spectrum is corrected for bremsstrahl-
ung with the PHOTOS [77] generator. For charged B decay, this package has been shown [78]
to reproduce the exact formula [79]. For neutral B decay, the charged D� and l+ in the
final state attract each other, which is reflected in a slightly di↵erent formula for the ra-
diation [11]. Reference [12] recommends treating this e↵ect with a Coulomb correction,
1 + ↵⇡/2 = 1.01146 on the amplitude, which is larger than the electroweak correction and
similar in size to the uncertainties from experiment and from QCD. Note, however, that a
detailed study of radiative corrections in K ! ⇡l⌫ finds that QCD-scale e↵ects reduce the
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Experimental error on ε′/ε ≈ 14%

RBC/UKQCD 12 I = 2, RBC/UKQCD 11∗ I = 0

On top of matching: analytic control of finite-volume effects (also ∆MK )



Outline

I Control of lattice discretization errors

I Matching non-perturbative and perturbative results

I Control of finite volume effects
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Control of lattice discretization errors



a
L

Competing constraints amh � 1 and 1 � mπL (in
particular for physical mπ)
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Solutions

1. Extrapolation / Interpolation in amh: ETM, HPQCD,
RBC/UKQCD (in progress), . . .

2. Effective Field Theories: HQET, NRQCD, Fermilab/RHQ, OK

3. Direct simulation at amh � 1: Frozen Topology?

Analytic methods: removal of dominant amh errors in 1) and 3),
tuning of parameters in 2)
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Methodology

I Lattice Perturbation Theory (discussed later in detail)

I (Partly) non-perturbative: tune parameters of EFTs by, e.g.,

I matching of long-distance observables to experiment
(RBC/UKQCD RHQ)

I matching of short-distance observables to a QCD simulation in
smaller volume and lattice spacing (Alpha NP HQET)
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An entire different type of lattice artifact in long-distance
contributions Christ et al. 2012:

Short distance correction to box-topology-only ✏K

Ziyuan Bai

August 4, 2014

In the box topology of epsilonK calculation, we have the following diagram:

s

d

d

s

WW

u � c

c

Figure 1: box topology for �S = 2 process

Because we only have GIM cancellation in one of the quark lines, this diagram is logarithmic divergent, with
the short distance part cut o↵ by our lattice spacing. We remove the short distance artifact by the following
steps.

A ! A � Alat
SD + Acont

SD (1)

Alat
SD = hK0(tf )C lat(µ2)OLL(t)K0(ti)i (2)

Acont
SD = hK0(tf )Ccont(µ2)OLL(t)K0(ti)i (3)

(4)

We have to do NPR to find the Wilson Coe�cient C lat(µ2)

⇣
�amp
↵,�,�,�(p) � C lat

s (µ2)�amp,SD
↵,�,�,� (p)

⌘
P↵,�,�,� = 0 (5)

Where the �amp
↵,�,�,�(p) are amputated Green functions with our choice of weak Hamiltonian, and the �amp,SD

↵,�,�,� (p)

are the amputated Green function with short distance O�S=2
LL instead.

�↵���(pi) = hs↵(p1)d̄�(p2)

Z
d4x1

Z
d4x2HW (x1)HW (x2)s�(p3)d̄�(p4)i. (6)

�SD
↵���(pi) = hs↵(p1)d̄�(p2)

Z
d4xOLL(x)s�(p3)d̄�(p4)i. (7)

1

K0 K̄0

d

d

s

s

u

u

HW HW

t1 t2
K0†(ti) K

0
(tf)

ta tb

FIG. 1. One type of diagram contributing to A in Eq. (4). Here t2 and t1 are integrated over the

time interval [ta, tb], represented by the shaded region.

The other terms in Eq. (5) can be classified into four categories according to their dependence

on T :

i) The term independent of T within the large parentheses. This constant does not affect

our determination of the mass difference from A .

ii) Terms exponentially decreasing as T increases coming from states |n⟩ with En > MK .

These terms are negligible for sufficiently large T .

iii) Terms exponentially increasing as T increases coming from states |n⟩ with En < MK .

These will be the largest contributions when T is large and must be removed as

discussed in the paragraph below.

iv) The final term proportional to T 2 coming from states degenerate with the kaon. As

discussed below, this term must be identified and removed in order to relate the finite-

and infinite-volume expressions for ∆MK following the method of Ref. [4].

This behavior of the integrated correlator is interpreted in Appendix B by using standard

perturbation theory to analyze the time development generated by the sum of the QCD and

weak Hamiltonian. This provides insight into Eq. (5) and allows other alternative choices

of correlation function to be easily discussed.

The exponentially growing terms, introduced in item iii) above, pose a significant chal-

lenge. Fortunately, the two leading terms corresponding to the vacuum and single pion

states can be computed separately and subtracted. In this work, since no disconnected

diagrams are included, there is no contribution from the vacuum state. The matrix ele-

ment ⟨π0|HW |K0⟩ can be obtained from three-point correlation functions which allows the

exponentially growing single-pion term to be determined and removed.

8

GIM cancellation difference: ∆MK versus long-distance εK
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Matching non-perturbative and perturbative results



Scheme matching methodology

I LPT+CPT

I NP+CPT See talk by Christian Sturm

I NP+LPT+CPT
Takeda et al. 2003,
Rubio et al. 2012,
Constantinou et al. 2013
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Gradient Flow Renormalization

a r
L

Smear fields and thus compos-
ite operators via a differential
equation in flow-time t with
r =
√

8t.
For gluons with Bµ(t =
0, x) = Aµ(x): ∂tBµ =
DνGνµ, Gµν = ∂µBν−∂νBµ+
[Bµ,Bν ], Dµ = ∂µ + [Bµ, ·]

History on next slide

A renormalized operator at t > 0 can then be expressed as

Or (t, x) =
∑

n,m,in+m

O(n+m,in+m)(x)C (n+m,in+m)
√
t
n
am

with a local operator O(d ,i)(x) of dimension d . Simple mixing
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History

I First mentioned in lattice context (Wilson loops): Narayanan
and Neuberger 2006

I

Systematically discussed for gluons:
Luscher 2010 (including proof of
finiteness and a definition of a renor-
malized coupling constant)

I Discussion of perturbative treatment: Luscher and Weisz 2011

I Including fermions: Luscher 2013

I Renormalization of Energy-Momentum Tensor: Suzuki 2013

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t /r0
2

0

0.1

0.2

0.3

0.4

0.5

t2〈E〉

t0

√   8t = 0.2 fm √   8t = 0.5 fm

Fig. 2. Simulation data obtained at a = 0.05 fm for t2⟨E⟩ as a function of the flow

time t (black line). Statistical errors are smaller than 0.3% and therefore invisible on

the scale of the figure. The curve predicted by the perturbation series (2.36) and the

known value (3.2) of the Λ-parameter is also shown (grey band).

units of r0. The curve obtained in this way is shown in fig. 2 together with the error

band that derives from the error of Λ quoted in eq. (3.2).

Perhaps somewhat fortuitously, the simulation results obtained at a = 0.05 fm

accurately match the perturbative curve over a significant range of t. The symmetric

definition of E has here been used and for clarity the data from only one lattice are

shown (as discussed below, the lattice-spacing effects are small and the data from

the other lattices would therefore lie nearly on top of the line plotted in fig. 2).

Beyond the perturbative regime, t2⟨E⟩ grows roughly linearly with t, at least so

within the range covered by the simulation data. The slowdown of the density ⟨E⟩
from the perturbative 1/t2 to a smoother 1/t behaviour may perhaps be explained

by noting that the Wilson flow tends to drive the gauge field towards the stationary

points of the gauge action. In the vicinity of these points of field space, the right-

hand side of the flow equation (1.4) is small and E consequently changes only little

with time.

3.4 Lattice-spacing effects

Perturbation theory suggests that the density ⟨E⟩ scales to the continuum limit like

11
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RI schemes

RI renormalization condition on gauge-fixed off-shell amplitudes:
details will be explained by Christian in the next talk.

SF schemes

Schroedinger Functional (transition amplitude between specific
field configurations at t = 0 and t = T Euclidean times) allows for
the definition of renormalized quantities (boundary fields serve as
source terms).

This yields finite-volume schemes in which 1/T is the
renormalization scale. No gauge fixing is necessary for the
non-perturbative computation.

Luscher et al. 1992

Martinelli et al. 1995
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RI schemes – Gribov copies

The Landau gauge fixing procedure on the lattice minimizes
a function whose minima satisfy the gauge fixing condition.
Only one of the minima corresponds to the continuum Gribov
copy.

difference derivative with reunitarisation in the exponentiation (A.2.2).

3.5.2 Gribov copies

To assess the impact of Gribov copies in our work, we computed the so called worst and

best copies for a set of thermalised 163 × 32 configurations. The worst copy being the

copy that gave the largest gauge fixing functional from 150 randomly gauge transformed

copies of each configuration, and the best copy being the one that minimised the gauge

fixing functional. The best copies were attained using the smeared-preconditioned

method, described in Chapter 1, Sec.6.7.3.

Once this had been performed for an appreciable number of configurations (30 with

separation 100 in Monte Carlo time), we measured the unrenormalised gluon propagator

G(2)(p2).

0.0 0.01 0.1 1 10
p [ GeV ]

1

10

G
(2

) (p
2 )

best copy
worst copy

(a) Log-Log plot of the propagator.

0.0 0.01 0.1 1
p [ GeV ]

10

G
(2

) (p
2 )

best copy
worst copy

(b) A zoom into the IR.

Figure 3.5 The unrenormalised gluon propagator for the best and worst from
150 random gauge transformations per 30 well-separated 163 × 32,
Nf = 2+1 Domain Wall configurations. The zero momentum mode
has been shifted so that it can be included in the log-log plot.

Fig.3.5 illustrates a measurement of the Landau gauge gluon propagator using the worst

and best from 150 Gribov copies of 30 configurations. It seems that whatever effect

Gribov copies play for this measure it is slight (as long as we are properly sampling

the space of copies effectively and the gauge fixing functional is the best measure for

Gribov effects) as also seen in [148] and exists in the low momentum region (IR), with

only one mode (the (0,0,0,1)) not overlapping between copies within statistical errors.

As in Fig.3.4, we see the expected 1
p2 behaviour, but in the low momentum IR region

we see a change from this. This is widely construed as the gluon having an effective

dynamically-generated mass [123]. A form for the gluon propagator of G(2) = 1
p2+m2

would cause this, however phenomenology of the IR limit of QCD is difficult in a finite

volume (as we will see in Sec.3.5.3) and not the subject of this thesis.

40

Jamie Hudspith 2013

Spread of 150 random gauge transformations prior to
Landau-GF. Result for gluon propagator:

0 1 2 3 4

µ, GeV

1

1.1

1.2

1.3

Z q/Z
VL

Maximal axial
no MA

Yuri Zhestkov 2001

Effect of first fixing to maximal axial gauge:

Also: as αs → 0 all links are naturally close to the unit link
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Step scaling

Z (µ)

aµ small, αs(µ) non-perturbative

Z(µ′�µ)
Z(µ)

αs(µ′) smaller

SF: Luscher et al. 1993

RI: Arthur et al. 2010

SF: tuning of volume
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Step scaling – Example ∆S = 1 operator

(Blum et al. 2012): σ/U is ratio of non-perturbative vs. perturbative running (Sturm/CL) from µ to 3 GeV for
operator Q8 = s̄aγµ(1 − γ5)db

∑
q=u,d,s q̄bγµ(1 + γ5)qa(3eq/2); results for two RI-SMOM operator schemes

with γ wave-function scheme
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Lattice Perturbation Theory

Uµ

Express links in terms of algebra

Uµ(x) = e igaAµ(x)

and expand in g
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Increased complexity (1-loop quark-gluon vertex for RHQ lattice
action):

Also: each vertex is very complicated (see P. Lepage’s talk)
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Automation of LPT

Luscher-Weisz 1986: simple CAS-based approach has prohibitive
complexity, propose specific data structure and algorithm for
automation

I Hart et al. 2005: extension to include Fermions

I Hart et al. 2009: extension to allow for complex smearing

I Takeda 2009 and Hesse et al. 2011: further refinement for
various Fermion actions

Advantages of CAS-based approach:

Analytic simplifications (CSE, recurrence relations), Flexibility,
Same footing for lattice and continuum regulator
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A Physics System based on Hierarchical Computer Algebra

(Lehner 2012)

http://physyhcal.lhnr.de/

I Completely automates perturbative computations for a wide class of
regulators (lattice/continuum)
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Different classes of regulators

I 4-dimensional momentum space: Wilson, RHQ, Gauge,
Continuum (d-dimensional)

I 4-dimensional momentum space plus one extra dimension:
Domain Wall Fermions (algebraic or numerical treatment of
5d)

I 3-dimensional momentum space plus temporal dimension in
position space: Schroedinger Functional implementations

I Continuum NDR
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A few applications

I B physics with RHQ bottom and DWF light quarks by
Kawanai (BNL), Meinel (MIT), and Witzel (BU),

I B physics with Oktay-Kronfeld bottom quarks (1-loop tuning)
by Jang (Seoul National University),

I the study of improved Brillouin heavy quarks by Cho and
Hashimoto (KEK),

I the determination of mb using NRQCD (2-loop matching) by
Lehner (BNL) and Monahan (College of William & Mary),

I the control of discretization and matching uncertainties for
static quarks by Ishikawa, Izubuchi, and Lehner (BNL),

I the (g − 2)µ light-by-light computation by Blum (UConn),
Hayakawa (Nagoya), Izubuchi (BNL), and Lehner (BNL).

In progress: Two-loop methodology such as color-twisted boundary
conditions
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Brillouin action used by JLQCD (Cho et al. 2013):
• eliminate O(a2)-errors at tree-level

• Improved Brillouin Dirac operator

• expansion of energy up to O(a5)

• Dispersion relation(massless, massive)

O(a2)-IMPROVED BRILLOUIN FERMIONS

 0
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continuum
Wilson
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improved Brillouinm = 0.0 m = 0.5

=> start from O(a3)
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THE BRILLOUIN OPERATOR 
WITH GAUGE FIELDS

• take a average of all paths for every hopping term

•  recursion algorithm of standard derivative and laplacian
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Recurrence relations

I Becher and Melnikov 2002:
Asymptotic expansion of lattice loop integrals around the
continuum limit. Expand propagators in a, add analytic
regulator to define leading order. Significant complication
arises from tensor decomposition with reduced symmetry.
Then use recurrence relations to reduce to master integrals.

I Becher et al. 2003 Mass renormalization in Asqtad action at 1
loop

I Becher et al. 2005 ∆S = 2 operator staggered renormalization
factors 1 loop
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Numerical Stochastic Perturbation Theory

Parisi and Wu 1981, Renzo et al. 1994

Stochastic quantization (similar to WF equations with a noise
term) allows for derivation of coupled differential equations for
each order in the bare coupling. Averages taken in the long “time”
limit should correspond to the proper quantum average.

I Hasegawa et al. 2012: 3-loop renormalization constants for
quark bilinears using Wilson fermions (RI’/MOM)

I Bali et al. 2014: expansion of the plaquette to O(α35)
evidence for renormalon. Color-twisted boundary conditions to
regulate IR.
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Control of finite volume effects



Finite volume as a boonBackground and Motivation

Bubble Chamber Picture

Weak phase shift

Strong phase shift
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Finite volume as a boonBackground and Motivation

Bubble Chamber Picture

Weak phase shift

Strong phase shift
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Finite volume as a boon

Scattering phases accessible in finite volume

L

Free case:

Periodic wave-function ⇒ quantization condition p = (2π/L)Z
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Finite volume as a boon

Scattering phases accessible in finite volume

L

Interacting case:

Periodic wave-function ⇒ quantization condition for scattering
phase-shift δ(p) ⇒ measured finite-volume energy yields δ(p)

(Lüscher 1991)
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Finite volume as a boon (Lellouch and Lüscher 2001)

I Consider weak Hamiltonian as perturbation

I Study of phase shift in perturbed theory yields a relation
between finite-volume and infinite-volume K → ππ amplitude
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Beyond K → ππ

I Hansen and Sharpe 2012: multiple strongly coupled two scalar
particles (ππ,KK )

I Briceno et al. 2014: extend to allow for arbitrary momentum
injection

I Horgan et al. 2014 (see also Wingate’s talk): B0 → K ∗0`+`−

(πK , ηK included)

A different extension of Lellouch–Lüscher for long-distance
contributions (such as ∆MK and the LD part of εK ) have been
discussed in Christ et al. 2014.
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QCD+QED

Precision requirements mandate the inclusion of QED in future
computations. QED acts on larger distances and yields substantial
finite-volume effects.

Successful correction using an-
alytic methods (finite-volume
QED): BMW 2014
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Figure S8: Finite-volume effects in baryon isospin splittings. The dependence is always consistent with the
universal behavior of Eq. (26) (dashed lines).
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Figure S8: Finite-volume effects in baryon isospin splittings. The dependence is always consistent with the
universal behavior of Eq. (26) (dashed lines).
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Alternative NP method suggested at Lattice 2014 CL and Izubuchi
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Conclusion



Lattice QCD is entering the age of precision.
Simulations are performed at physical light
quark masses and QED and other isospin break-
ing effects are started to be included.

In order to keep up with these improvements,
systematic uncertainties of which many can be
addressed with analytical methods need to be
controlled better.

The expertise of continuum theorists should be
applied to these problems!
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