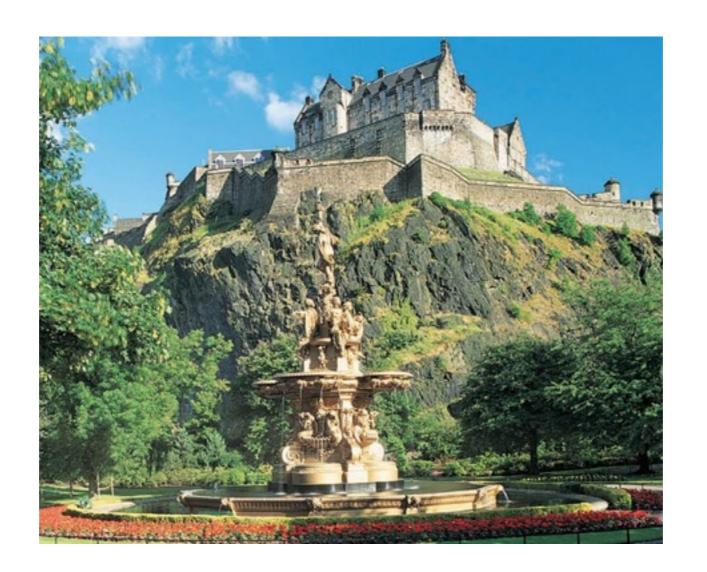
# GLUON CONDENSATES AS SUSCEPTIBILITY RELATIONS







Roman Zwicky Edinburgh University

1 Oct 2014 — Lattice meets Pheno — Siegen

## Main result

# to be derived and discussed throughout

$$\bar{g} \frac{\partial}{\partial \bar{g}} M_H^2 = -\frac{1}{2} \langle H(E_H) | \frac{1}{\bar{g}^2} \bar{G}^2 | H(E_H) \rangle_c$$

$$\bar{g} \frac{\partial}{\partial \bar{g}} \Lambda_{GT} = -\frac{1}{2} \langle 0 | \frac{1}{\bar{g}^2} \bar{G}^2 | 0 \rangle$$

Del Debbio and RZ 1306.4274 (PLB'2014)

- advocate: LHS provides a definition of the RHS
- direct computation of gluon condensates (RHS) plagued by power divergences no definite result known
   (0|G²|0) = 0±0.012GeV⁴ (talk P.Lepage) c.f. also loffe'05 indirect determinations

<sup>\*</sup> barred quantities correspond to renormalised quantities & c stands for connected part N.B.  $\frac{\partial}{\partial q}E_H=\frac{\partial}{\partial q}M_H$   $\langle 0|T_\mu{}^\mu|0\rangle=D\Lambda_{\rm GT}$ 

# Overview

- Derivations (A) Feynman-Hellmann & Trace anomaly & RG-Eqs
   (B) Hamiltonian formalism (direct use of FH-thm)
- Illustration in exactly solvable models
- Where it cam from: corrections to scaling of the mass(-operator)
- Epilogue (applications)
- Backup slides: comment energy momentum tensor on lattice
  - issue of Konishi-anomaly

## two derivations

## (A) trace anomaly, feynman-Hellmann-thm & RGE

Del Debbio and RZ 1306.4274 (PLB'2014)

Feynman-Hellmann thm: 
$$\frac{\partial E_{\lambda}}{\partial \lambda} = \langle \psi(\lambda) | \frac{\partial \hat{H}(\lambda)}{\partial \lambda} | \psi(\lambda) \rangle$$

idea: 
$$\frac{\partial \langle \psi(\lambda) | \psi(\lambda) \rangle}{\partial \lambda} = 0$$

• useful provided  $H(\lambda)$  known (QFT different normalisation has to be taken into account)

example 
$$H(m) = mN_F\overline{q}q+..$$

$$\frac{\partial}{\partial \bar{m}} M_H^2 = N_F \langle \psi | \bar{q}q | \psi \rangle_c$$

- For  $\lambda$ =g (gauge coupling) complicated since  $A_0$  not dynamical. Show: if use all ingredients in the title then we can get relations!
- Fix notation  $|H(adron)\rangle$ :  $\langle H(E', \vec{p'})|H(E, \vec{p})\rangle = 2E(\vec{p})(2\pi)^{D-1}\delta^{(D-1)}(\vec{p} \vec{p'})$ ,

$$\langle X \rangle_{E_H} \equiv \langle H(E, \vec{p}) | X | H(E, \vec{p}) \rangle_c$$

$$Q \equiv N_f m \bar{q} q \; , \quad G \equiv g^{-2} G^A_{\alpha\beta} G^{A \alpha\beta} \; ,$$

#### three step procedure ....

### 1. EM-tensor & trace anomaly:

$$T_{\mu}^{\mu}|_{\text{on-shell}} = \frac{\bar{\beta}}{2\bar{g}}\bar{G} + (1+\bar{\gamma}_m)\bar{Q}$$
,

for gauge theory (bar renormalised quantities important!)

Adler et al, Collins et al N.Nielsen '77 Fujikawa '81

#### Evaluate on physical state |H| one gets:

$$2M_H^2 = \frac{\bar{\beta}}{2\bar{g}}\bar{G}_{E_H} + (1+\bar{\gamma}_m)\bar{Q}_{E_H} \;, \quad D\Lambda_{\rm GT} = \frac{\bar{\beta}}{2\bar{g}}\langle\bar{G}\rangle_0 + (1+\bar{\gamma}_m)\langle\bar{Q}\rangle_0 \;.$$

## 2. Feynman-Hellmann-thm (mass)

$$\bar{m}\frac{\partial}{\partial \bar{m}}E_H^2 = \langle \bar{Q} \rangle_{E_H} , \quad \bar{m}\frac{\partial}{\partial \bar{m}}(D\Lambda_{GT}) = \langle \bar{Q} \rangle_0 .$$

3. Renormalization group equation

$$\left(\bar{\beta}\frac{\partial}{\partial\bar{g}} - (1+\bar{\gamma}_m)\bar{m}\frac{\partial}{\partial\bar{m}} + 2\right)M_H^2 = 0, \quad \left(\bar{\beta}\frac{\partial}{\partial\bar{g}} - (1+\bar{\gamma}_m)\bar{m}\frac{\partial}{\partial\bar{m}} + D\right)\Lambda_{\rm GT} = 0,$$

**FH-thm** (2)

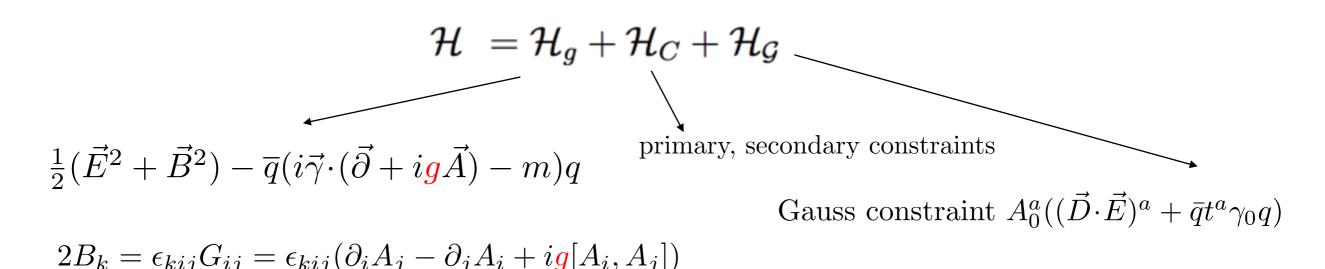
#### Combining our results takes on the form:

$$\bar{g}\frac{\partial}{\partial \bar{g}}E_H^2 = -\frac{1}{2}\langle \bar{G}\rangle_{E_H} , \quad \bar{g}\frac{\partial}{\partial \bar{g}}\Lambda_{GT} = -\frac{1}{2}\langle \bar{G}\rangle_0 .$$

## (B) After all from the Hamiltonian formalism

• guiding question: H-formalism is non-covariant! how Lorentz invariance emerge?  $\vec{\pi} = \vec{E}, \vec{A} \ indep.$  canonical variables ( $\pi_0 = 0, A_0$  Lagrangian multiplier)

$$[A^{k}(x_{0}, \vec{x}), E_{l}(x_{0}, \vec{y})] = i\delta^{k}_{l}\delta^{(D-1)}(\vec{x} - \vec{y})$$



- step 1: only H<sub>g</sub> non-vanishing on physical states drop H<sub>C,G</sub>
- step 2: put g's into right place by performing canonical transformation:  $\vec{A} o rac{1}{g} \vec{A} \;, \quad \vec{E} o g \vec{E}$

- a) leaves can. commutator invariant
  - b) no rescaling (Konishi) anomaly (non-trivial)

$$\mathcal{H}_g = \frac{1}{2} (\mathbf{g^2} \vec{E}^2 + \frac{1}{\mathbf{g^2}} \vec{B}^2) - \overline{q} (i \vec{\gamma} \cdot \vec{\partial} + i \vec{A} + m) q$$

• the pathway to a Lorentz-invariant result is now straightforward ...

$$g \frac{\partial}{\partial g} \mathcal{H}_g = g^2 \vec{E}^2 - \frac{1}{g^2} \vec{B}^2 = -\frac{1}{2} \frac{1}{g^2} G_{\mu\nu} G^{\mu\nu}$$

very same relations (as before) emerge

$$\bar{g}\frac{\partial}{\partial\bar{g}}E_H^2 = -\frac{1}{2}\langle\bar{G}\rangle_{E_H}, \quad \bar{g}\frac{\partial}{\partial\bar{g}}\Lambda_{GT} = -\frac{1}{2}\langle\bar{G}\rangle_0.$$

 advantage: the Hamiltonian derivation makes it clear that relation valid for product groups e.g. G = U(1)xSU(2)xSU(3)

## illustration in exactly solvable models

- Schwinger model (QED2 massless fermions) photon mass e<sup>2</sup>/π
- massive flavoured Schwinger model cosmological constant
- N=2 SYM (Seiberg-Witten) monopole mass

## Photon mass Schwinger model

• Schwinger model: QED2  $m_f=0$  - generation of photon mass:  $M_V=e/\sqrt{\pi}$ 

$$e\frac{\partial}{\partial e}M_{\gamma}^2=-\frac{1}{2}\langle\gamma|F^2|\gamma\rangle_c \qquad \text{adaption 20 Legal}$$

Lowenstein-Swieca operator solution can compute RHS —

$$F_{\mu\nu} = \frac{\sqrt{\pi}}{e} \epsilon_{\mu\nu} \Box \Sigma$$
 
$$F_{\text{ree field mass e}} \epsilon_{\text{field mass e}} \epsilon_{\text{fi$$

Insert into equation above and solve

$$e\frac{\partial}{\partial e}M_{\gamma}^2 = 2\frac{e^2}{\pi} \quad \Rightarrow \quad M_{\gamma}^2 = \frac{e^2}{\pi} + C$$

boundary condition C=0 and this completes the illustration!

## N=2 SYM (Seiberg-Witten)

- BPS states obey:  $M_{(e,m)}= 2 \ln_e a + n_m a_D l^2$  where a,a<sub>D</sub> part of SW-solution
- BPS-Hamiltonian magnetic monopoles (n<sub>e</sub>=0, B̄ static ⇒ Ē=0 & no fermions as BPS)

$$\mathcal{H}_{BPS} = \frac{1}{g^2} \vec{D}\phi \cdot \vec{D}\phi + \frac{1}{2} \frac{1}{g^2} \vec{B}^2$$

• BPS-eqn: 
$$\vec{D}\phi|\mathrm{BPS}\rangle = \frac{1}{\sqrt{2}}\vec{B}|\mathrm{BPS}\rangle \quad \Rightarrow \quad \mathcal{H}_\mathrm{BPS} = \frac{1}{g^2}\vec{B}^2$$

$$g\frac{\partial}{\partial g}\mathcal{H}_{BPS} = -2\frac{1}{g^2}\vec{B}^2 \stackrel{\vec{E}=0}{=} -\frac{1}{g^2}G^2$$

because of supersymmetry

- ⇒ shown main Eqn obeyed BPS-subspace
- Unlike Schwinger model, can't compute RHS directly used LHS to get RHS=⟨BPS|G²|BPS⟩
   RHS governed by magnetic coupling g<sub>D</sub> e.g. RHS →0 for g<sub>D</sub> →0

## Where it all came from

## scaling correction to hadronic mass in near conformal phase

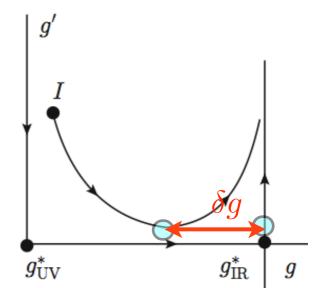
Del Debbio and RZ 1306.4038 (PRD'2013)

consider conformal theory with mass deformation expand around fixed pt coupling g\*

$$\beta = \beta_1 \delta g + \mathcal{O}(\delta g^2) , \qquad \delta g \equiv g - g^* ,$$

$$\gamma_m = \gamma_m^* + \gamma_m^{(1)} \delta g + \mathcal{O}(\delta g^2) ,$$

$$\gamma_{ij} = \gamma_{ij}^* + \gamma_{ij}^{(1)} \delta g + \mathcal{O}(\delta g^2) , \qquad (\gamma_{ij} \equiv (\gamma_O)_{ij}) .$$



each local operator O investigate Callan-Symanzik-Weinberg-'tHooft type RGE

$$\left( \left( \Lambda \frac{\partial}{\partial \Lambda} \delta_{ij} + \beta(g) \frac{\partial}{\partial g} \delta_{ij} - \gamma_m m \frac{\partial}{\partial m} \delta_{ij} - \gamma_{ij} \right) O_j(g, m, \Lambda) = 0 \right)$$

UV-cut off:  $\Lambda$ ,  $\gamma_m = -\Lambda \frac{d}{d\Lambda} \ln m$ ..

- correction to scaling to hadronic mass through
  - a) RGE above applied to  $O = M_H$
  - b) or apply scaling to all four quantities in trace anomaly

$$2M_H^2 = \left(\frac{\bar{\beta}}{2\bar{g}}\right) \bar{G}_{M_H} + (1 + \bar{\gamma}_m) \bar{Q}_{M_H} ,$$

a) and b) agree only if susceptibility relation hold

### Epilogue

$$\bar{g}\frac{\partial}{\partial \bar{g}}E_H^2 = -\frac{1}{2}\langle \bar{G}\rangle_{E_H}, \quad \bar{g}\frac{\partial}{\partial \bar{g}}\Lambda_{GT} = -\frac{1}{2}\langle \bar{G}\rangle_0.$$

- Scheme dep. of RHS inherited from scheme dependence of coupling g
- LHS defines RHS suggest total change of viewpoint (Recall: direct computation of G-condensate fails because power divergences mixing with lower dimensional operators e.g. identity (quartic UV-divergence))
- Practice computation of <a href="#">HIG2IH></a> (should be) straightforward
  - a) lattice
  - b) approaches like AdS/QCD or Dyson-Schwinger Eqn which produce M<sub>H</sub>
  - opens up opportunities to define  $\beta$  and  $\gamma_m$  through interplay with trace anomaly:

$$2M_H^2 = \frac{\bar{\beta}}{2\bar{g}} \langle H|\bar{G}^2|H\rangle + (1+\bar{\gamma}_m)\bar{m}\langle H|qq|H\rangle$$

For example if  $\bar{m}=0$  then

$$(\bar{\beta}_{\rm YM})^{-1} = -\frac{\partial}{\partial \bar{g}} \ln M_H$$

- Computation of (0|G²|0) is more difficult per se
  - on lattice demands mastering EMT problems due to breaking of translation symmetry (additional renormalisation)
     recent progress using Wilson flow
     del Debbio,Patella, Rago JHEP(2014)
  - check PCD(ilaton)C hypothesis for gauge theory dilation candidate (Higgs imposter) (analogue PCAC soft pion reduction)

$$2m_D^2 = \frac{\beta}{2g} \langle D|G^2|D\rangle + O(m_q) \stackrel{\text{soft dilaton}}{\simeq} \frac{\beta}{2g} \frac{1}{f_D^2} \langle 0|G^2|0\rangle + O(m_q) \qquad \langle D|G^2|0\rangle = f_D$$

- compute QCD contribution to cosmological constant
   N.B. practice mastering EMT already enough yet relations useful in eliminating constant which is independent of g
- one could do conversion calculation to MS-bar and compare with value extracted from OPE (e.g. charmonium sum rules or SVZ sum rules)

#### THANKS FOR YOUR ATTENTION

# backup slides

### renormalization of energy momentum tensor (EMT)

- continuum EMT does not renormalise ( $Z_{T\alpha\beta} = 1$ ) since conserved quantity (still need to renormalise parameters of theory of course)
- **lattice** break Lorentz symmetry to hyper cubic symmetry hence the EMT is not conserved anymore  $Z_{T\alpha\beta} = 1$  does not apply or in other words we can write down further invariant with which the EMT mixes

Problem: how to tune counterterms

translation Ward identity to probe EMT

Caracciolo, Curci, Menotti, Pelissetto'90

$$\langle 0| \int d^3x T_{0\mu}(x)\phi(x_1)...\phi(x_n)|0\rangle = -\sum_{i=0}^n \frac{\partial}{\partial(x_i)^\mu} \langle 0|\phi(x_1)...\phi(x_n)|0\rangle$$

Problem: each probe contact term no gain

• using **Wilson flow** can avoid contact terms (probes are in bulk....)

del Debbio, Patella, Rago JHEP (2014)

## issue of konishi anomaly

rescale field coupled to a gauge field by a constant then term appears G<sup>2</sup>
 like chiral transformation gives rise to G\*G-term (supersymmetry same footing)

• perform transformation 
$$ec{A} 
ightarrow rac{1}{f(g)} ec{A} \; ,$$
  $ec{E} 
ightarrow f(g) ec{E} \; .$ 

p-integral measure transforms as (same as Fujikawa chiral anomaly computation)

$$\ln \det \frac{\delta Q'(x)}{\delta Q(y)} = \ln \det \begin{pmatrix} f(g)^{-1}\delta(x-y) & 0\\ 0 & f(g)\delta(x-y) \end{pmatrix} = \ln \det \begin{pmatrix} f(g)^{-1} & 0\\ 0 & f(g) \end{pmatrix} \delta(x-y) = \ln \det \delta(x-y) ,$$

$$Q \equiv (\vec{A}, \vec{E})$$

—- two slides on what I wanted to say about heavy quark matrix elements —-

### Use of equation of motion for form factors

Consider QCD e.o.m./Ward-identity (study correction Isgur-Wise relations)

Grinstein Pirjol'04

$$i\partial^{\nu}(\bar{s}i\sigma_{\mu\nu}(\gamma_{5})b)=-(m_{s}\pm m_{b})\bar{s}\gamma_{\mu}(\gamma_{5})b+i\partial_{\mu}(\bar{s}(\gamma_{5})b)-2\bar{s}i\overset{\leftarrow}{D}_{\mu}\ (\gamma_{5})b$$
 • Evaluate on  $\langle \mathsf{K}^{*}|\dots|\mathsf{B}\rangle$  get 4 independent equations e.g. 
$$T_{1}(q^{2})-\frac{(m_{b}+m_{s})}{m_{B}+m_{K^{*}}}V(q^{2})+\mathcal{D}_{1}(q^{2})=0$$

$$T_1(q^2) - \frac{(m_b + m_s)}{m_B + m_{K^*}} V(q^2) + \mathcal{D}_1(q^2) = 0$$

- 1) any determination of form factors must satisfy e.o.m.
  - 2) Correlation function lattice/LCSR are compatible e.o.m. up to irrelevant contact terms

$$T_1(q^2) - \frac{(m_b + m_s)}{m_B + m_{K^*}} V(q^2) + \mathcal{D}_1(q^2) = 0$$

- 1) denote  $F(q^2)^{s_0^F,M_F^2}$ ,  $s_0^F$  threshold,  $M_F^2$  Borel parameter then compatible with eom  $s_0^{T_1}=s_0^V=s_0^{\mathcal{D}_1}$  and  $M_{T_1}^2=M_V^2=M_{\mathcal{D}_1}^2$  2) observe T<sub>1</sub>,V» D<sub>1</sub> (5% maximal) over q²-range [0,15]GeV²
- even associate 40% uncertainty to D₁ then ratio

$$r_{\perp}=rac{(m_b+m_s)}{m_B+m_{K^*}}rac{V(q^2)}{T_1(q^2)}$$
 determined up to 2%

Crucial for B→K\*II pheno as determines zero of helicity amplitude ....

<sup>\*</sup> means that so and M2 of T1 and V highly correlated