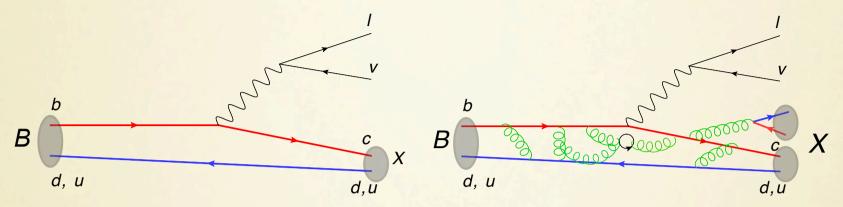

V_{cb} FROM INCLUSIVE SEMILEPTONIC B DECAYS

PAOLO GAMBINO UNIVERSITÀ DI TORINO & INFN


CKM 2014, VIENNA, 8/9/2014

IMPORTANCE OF $|V_{cb}|$

Since several years, exclusive decays prefer smaller $|V_{ub}|$ and $|V_{cb}|$

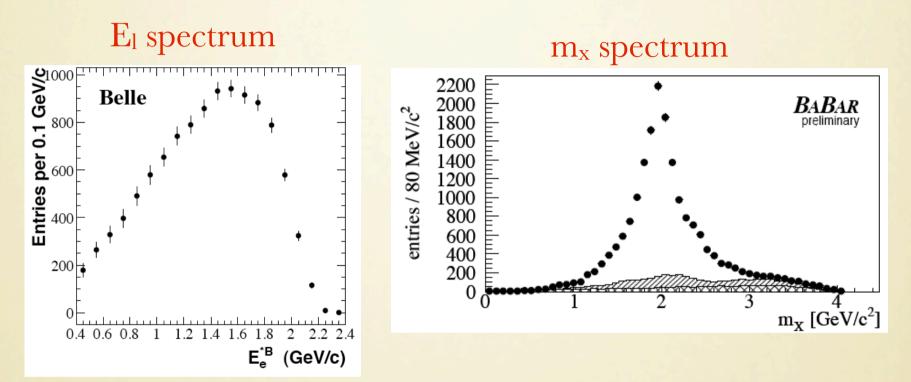
INCLUSIVE DECAYS: BASICS

- **Simple idea:** inclusive decays do not depend on final state, long distance dynamics of the B meson factorizes. An OPE allows to express it in terms of B meson matrix elements of local operators
- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: *double series in α_s, Λ/m_b*
- Lowest order: decay of a free *b*, linear Λ/m_b absent. Depends on m_{b,c}, 2 parameters at O(1/m_b²), 2 more at O(1/m_b³)...

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2M_{B}} \left\langle B \left| \bar{b} \left(i \vec{D} \right)^{2} b \right| B \right\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2M_{B}} \left\langle B \left| \bar{b} \frac{i}{2} \sigma_{\mu\nu} G^{\mu\nu} b \right| B \right\rangle_{\mu}$$

OBSERVABLES IN THE OPE

$$\begin{split} M = & M_0 \Big[1 + c_1(r) \frac{\alpha_s}{\pi} + c_2(r) \frac{\alpha_s^2}{\pi^2} \\ &- \frac{\mu_\pi^2}{2m_b^2} \Big(1 + c_\pi^{(1)}(r) \frac{\alpha_s}{\pi} \Big) \\ &+ \frac{\mu_G^2}{m_b^2} \Big(c_G^{(0)}(r) + c_G^{(1)}(r) \frac{\alpha_s}{\pi} \Big) \\ &+ c_D(r) \frac{\rho_D^3}{m_b^3} + c_{LS}(r) \frac{\rho_{LS}^3}{m_b^3} \\ &+ O\Big(\alpha_s^3, \alpha_s^2 \frac{\Lambda^2}{m_b^2}, \alpha_s \frac{\Lambda^3}{m_b^3}, \frac{\Lambda^4}{m_b^4} \Big) \Big] \\ r = \frac{m_c^2}{m_b^2} \end{split}$$


OPE valid for inclusive enough measurements, away from perturbative singularities **""** semileptonic width, moments

The fit presented here includes 6 non-pert parameters

$$m_{b,c,}$$
 $\mu^2_{\pi,G,}$ $\rho^3_{D,LS}$

and all known corrections up to $O(\Lambda^3/m_b^3)$

EXTRACTION OF THE OPE PARAMETERS

Global **shape** parameters (first moments of the distributions) tell us about B structure, m_b and m_c , total **rate** about $|V_{cb}|$

OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications (rare decays, $V_{ub},...$)

LET'S FOCUS ON:

Status of higher order corrections
 Estimate of residual theoretical errors
 Additional constraints in the fits

HIGHER ORDER EFFECTS

- Reliability of the method depends on our ability to control higher order effect and quark-hadron duality violations.
- **Purely perturbative corrections** complete at NNLO, small residual error Melnikov, Biswas, Czarnecki, Pak, PG
- Higher power corrections $O(1/m_Q^{4,5})$ known

Mannel, Turczyk, Uraltsev 2010

• **Mixed corrections** perturbative corrections to power suppressed coefficients completed at $O(\alpha_s/m_b^2)$ Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG

HIGHER POWER CORRECTIONS

Mannel, Turczyk, Uraltsev 1009.4622

Proliferation of non-pert parameters and powers of 1/m_c starting 1/m⁵. At 1/m_b⁴

 $2M_Bm_1 = \langle ((\vec{p})^2)^2 \rangle$ $2M_Bm_2 = g^2 \langle \vec{E}^2 \rangle$ $2M_Bm_3 = g^2 \langle \vec{B}^2 \rangle$ $2M_Bm_4 = g \langle \vec{p} \cdot \operatorname{rot} \vec{B} \rangle$ $2M_Bm_5 = g^2 \langle \vec{S} \cdot (\vec{E} imes \vec{E})
angle$ $2M_Bm_6 = g^2 \langle \vec{S} \cdot (\vec{B} imes \vec{B})
angle$ $2M_Bm_7 = g \langle (\vec{S} \cdot \vec{p})(\vec{p} \cdot \vec{B})
angle$ $2M_Bm_8 = g \langle (\vec{S} \cdot \vec{B})(\vec{p})^2
angle$ $2M_Bm_9 = g \langle \Delta(\vec{\sigma} \cdot \vec{B})
angle$

can be estimated by **Lowest Lying State Saturation** approx by truncating

In LLSA *good convergence* of the HQE. First fit with 1/m^{4,5}:

 $\langle B|O_1O_2|B\rangle = \sum_n \langle B|O_1|n\rangle \langle n|O_2|B\rangle$ $\frac{\delta V_{cb}}{V_{ch}} \simeq -0.35\%$ Turczyk,PG preliminary

NEW: Heinonen, Mannel 1407.4384 more systematic, discrepancies to be clarified

LLSA might set the scale of effect, not yet clear *how much it depends on assumptions on expectation values.* Large corrections to LLSA have been found. Mannel, Uraltsev, PG, 2012

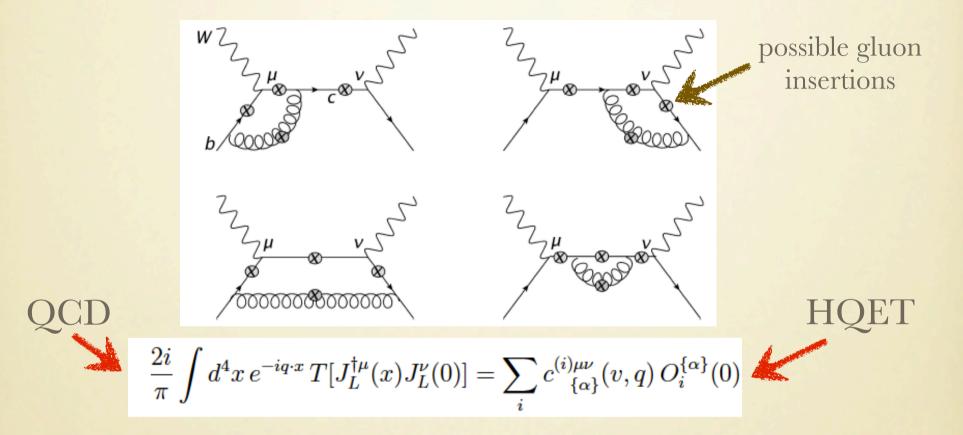
Allowing 80% gaussian deviations from LLSA seem to leave Vcb unaffected.

$$O(lpha_s/m_b^2)$$
 effects

Boos,Becher,Lunghi 2007 Ewerth,Nandi, PG 2009 Alberti,Ewerth,Nandi,PG 2012 Alberti,Nandi,PG 2013

Hadronic tensor
$$W^{\alpha\beta} = \frac{(2\pi)^3}{2m_B} \sum_{X_c} \delta^4 (p_b - q - p_X) \langle \bar{B} | J_L^{\dagger\alpha} | X_c \rangle \langle X_c | J_L^{\beta} | \bar{B} \rangle$$

 $m_b W^{\alpha\beta} = -W_1 g^{\alpha\beta} + W_2 v^{\alpha} v^{\beta} + i W_3 \epsilon^{\alpha\beta\rho\sigma} v_{\rho} \hat{q}_{\sigma} + W_4 \hat{q}^{\alpha} \hat{q}^{\beta} + W_5 (v^{\alpha} \hat{q}^{\beta} + v^{\beta} \hat{q}^{\beta})$


$$W_{i} = W_{i}^{(0)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,0)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}W_{i}^{(G,0)} + \frac{C_{F}\alpha_{s}}{\pi} \left[W_{i}^{(1)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,1)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}W_{i}^{(G,1)}\right]$$

 $W_i^{(\pi,n)}$ can be computed using **reparameterization invariance** which relates different orders in the HQET: e.g. for i=3 at all orders

$$W_3^{(\pi,n)} = \frac{5}{3}\hat{q}_0 \frac{dW_3^{(n)}}{d\hat{q}_0} - \frac{\hat{q}^2 - \hat{q}_0^2}{3} \frac{d^2 W_3^{(n)}}{d\hat{q}_0^2}$$
 Manohar 2010

Proliferation of power divergences, up to $1/u^3$, and complex kinematics (q^2, q_0, m_c, m_b) W_i^(G,1) requires proper matching.

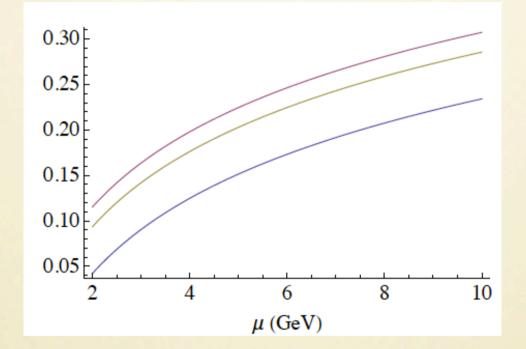
MATCHING AT $O(\alpha_s)$

Taylor expansion around on-shell b quark matched onto HQET local operators. Analytic formulae. RPI relations reproduced. Unlike μ_{π} , μ_{G} gets renormalized, therefore Wilson coefficients scale-dependent.

NUMERICAL RESULTS

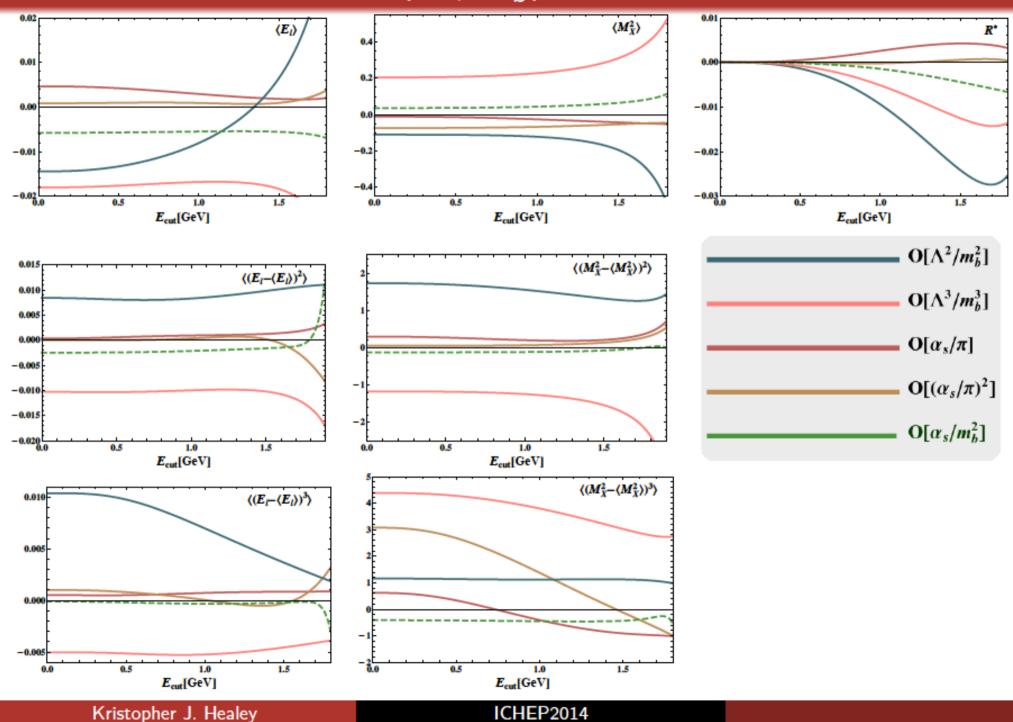
In on-shell scheme ($m_b=4.6$ GeV, $m_c=1.15$ GeV) without cuts

$$\Gamma_{B \to X_c \ell \nu} = \Gamma_0 \left[\left(1 - 1.78 \, \frac{\alpha_s}{\pi} \right) \left(1 - \frac{\mu_\pi^2}{2m_b^2} \right) - \left(1.94 + 2.42 \, \frac{\alpha_s}{\pi} \right) \frac{\mu_G^2(m_b)}{m_b^2} \right]$$

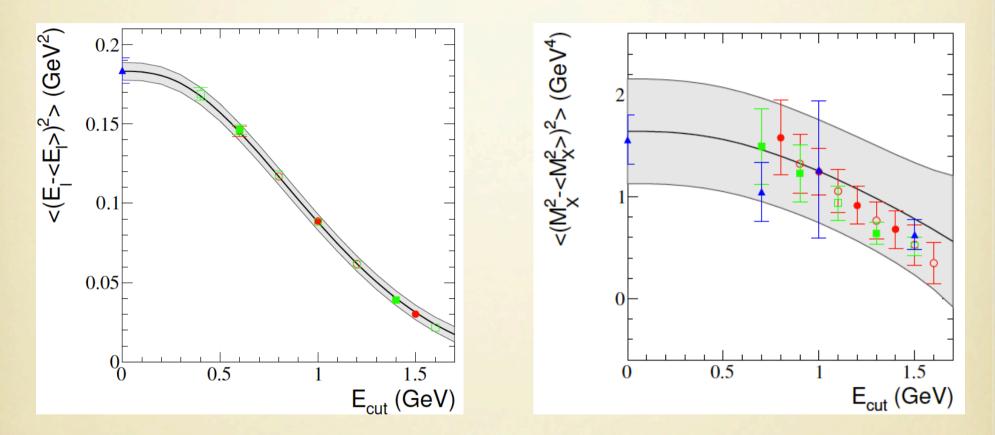

$$\langle E_{\ell} \rangle = 1.41 \text{GeV} \left[\left(1 - 0.02 \, \frac{\alpha_s}{\pi} \right) \left(1 + \frac{\mu_{\pi}^2}{2m_b^2} \right) - \left(1.19 + 4.20 \, \frac{\alpha_s}{\pi} \right) \frac{\mu_G^2(m_b)}{m_b^2} \right]$$

$$\ell_2 = 0.183 \,\text{GeV}^2 \left[1 - 0.16 \,\frac{\alpha_s}{\pi} + \left(4.98 - 0.37 \,\frac{\alpha_s}{\pi} \right) \frac{\mu_\pi^2}{m_b^2} - \left(2.89 + 8.44 \,\frac{\alpha_s}{\pi} \right) \frac{\mu_G^2(m_b)}{m_b^2} \right]$$

Similar results in the kinetic scheme. NLO corrections generally O(15-20%) of tree level coefficients, **shifts in some cases larger than experimental error**. Impact on V_{cb} requires new fit of semileptonic moments.

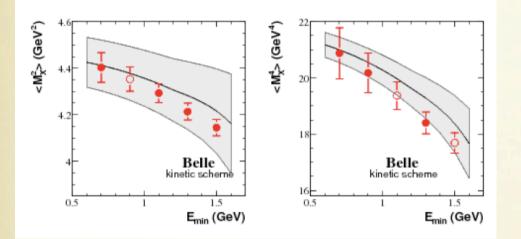

Mannel, Pivovarov, Rosenthal (1405.5072) have computed the μ_G correction to the width in the limit m_c=0 and find compatible result.

μ_G^2 -SCALE DEPENDENCE


Relative NLO correction to the coefficients of μ_G in the width (blue), first (red) and second central (yellow) leptonic moments as a function of the renormalization scale. Smaller corrections for smaller scale.

New Contributions $\mathcal{O}(\alpha_s/m_b^2)$:

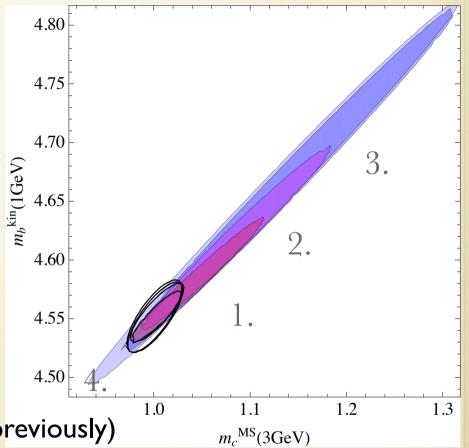
R


THEORETICAL ERRORS

Theoretical errors are generally the **dominant** ones in the fits. We estimate them in a **conservative** way by mimicking higher orders varying the parameters by fixed amounts.

Duality violation, expected to be suppressed, would manifest as inconsistency in the fit.

THEORETICAL CORRELATIONS



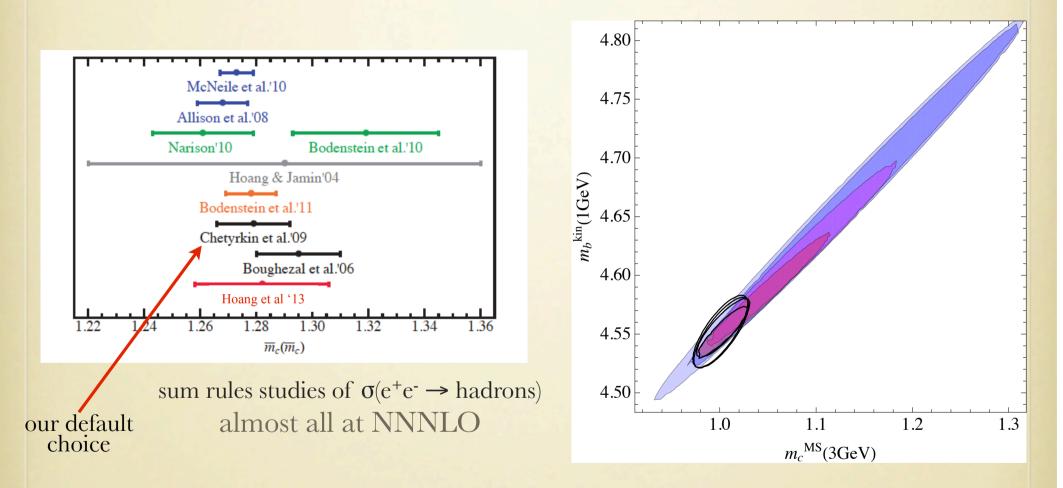
Correlations between theory errors of moments with different cuts difficult to estimate


1. 100% correlations (unrealistic but used previously)

- 2. corr. computed from low-order expressions
- 3. constant factor $0 < \xi < 1$ for 100 MeV step
- 4. same as 3. but larger for larger cuts

always assume different central moments uncorrelated I. and 2. are strongly disfavored when new corrections are included

THEORETICAL CORRELATIONS

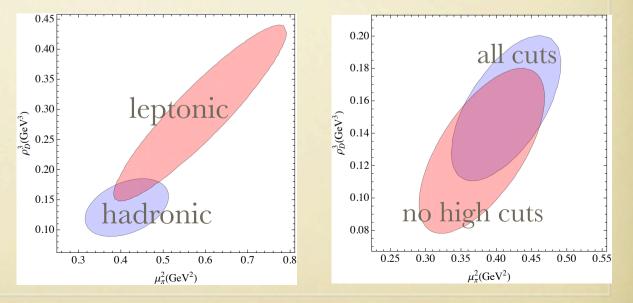

NEW SEMILEPTONIC FIT

Alberti, Healey, Nandi, PG

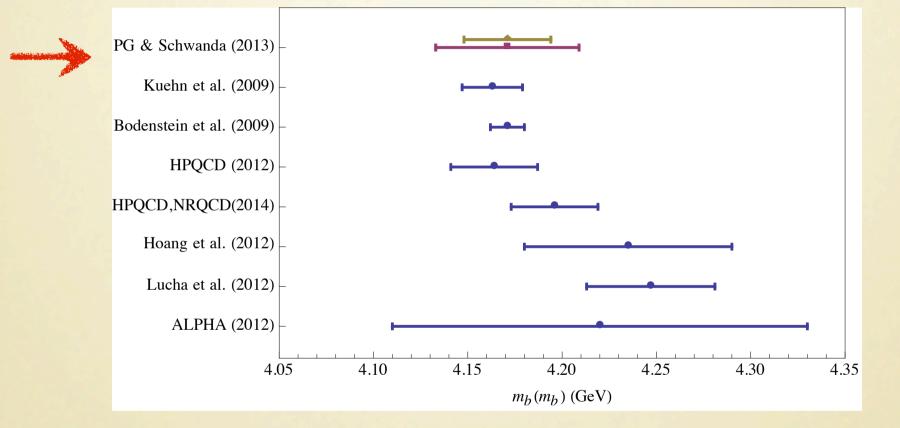
- updates the fit in Schwanda, PG, 1307.4551
- kinetic scheme calculation based on 1107.3100; hep-ph/0401063
- includes all $O(\alpha_s^2)$ corrections Czarnecki, Pak, Melnikov, Biswas, PG
- reassessment of theoretical errors, realistic correlations
- external constraints: precise heavy quark mass determinations, plus mild constraints on μ²_G from hyperfine splitting and Q³_{LS} from sum rules

Previous fits: Buchmuller, Flaecher hep-ph/0507253, Bauer et al, hep-ph/0408002 (1S scheme)

CHARM MASS DETERMINATIONS

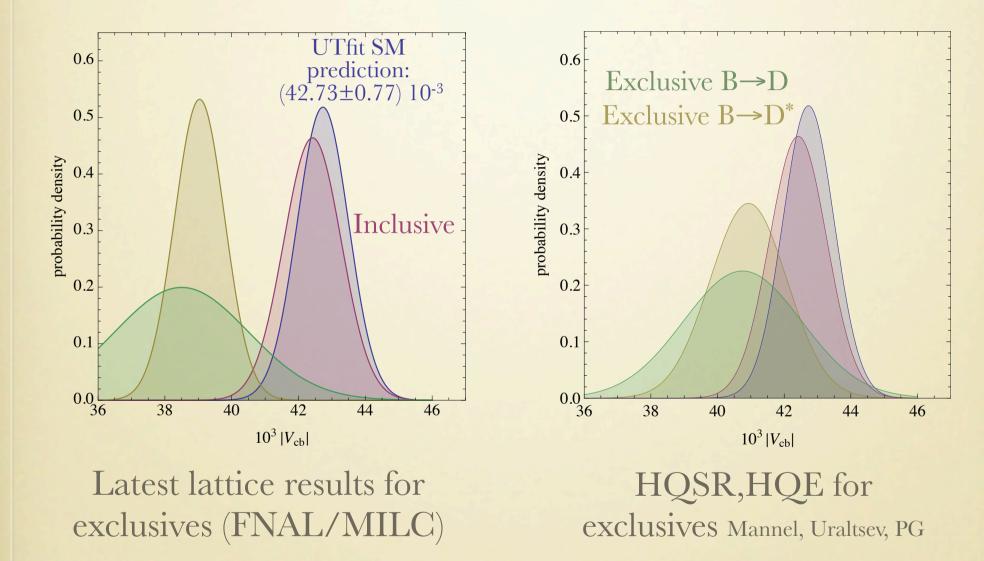

Remarkable improvement in recent years. m_c can be used as precise input to fix m_b instead of radiative moments

PRELIMINARY RESULTS


NEW	th corr scenario	${ m m_b}^{ m kin}$	$\begin{array}{c} m_c \\ (3 GeV) \end{array}$	μ_{π}	QD	μ _G	QLS	BR(%)	$10^{3}V_{cb}$
	4.	4.539	0.988	0.454	0.149	0.296	-0.142	10.67	42.41
	uncertainty	0.021	0.013	0.077	0.044	0.063	0.097	0.16	0.83
Schwanda PG 2013	th. corr. scenario	m_b^{kin}	$m_c^{(3Ge)}$	$^{\rm V)}\mu_{\pi}^2$	$ ho_D^3$	μ_G^2	$ ho_{LS}^3$ BR	$L_{c\ell\nu}(\%)$	$10^3 V_{cb} $
	4.	4.541	0.987	0.414	0.154	0.340 -(0.147 1	0.65	42.42
	uncertainty	0.023	0.013	0.078	0.045	0.066 0	0.098	0.16	0.86

Without mass constraints $m_b^{kin}(1 \,\text{GeV}) - 0.85 \,\overline{m}_c(3 \,\text{GeV}) = 3.701 \pm 0.019 \,\text{GeV}$

- results depend little on assumption for correlations and choice of inputs, 2% determination of V_{cb}
- 20-30% determination of • the OPE parameters



RESULTS: BOTTOM MASS

The fits give $m_b^{kin}(1\text{GeV})=4.539(21)\text{GeV}$, independent of th corr. scheme translation error $m_b^{kin}(1\text{GeV})=m_b(m_b)+0.37(3)\text{GeV}$

Vcb VISUAL SUMMARY

NEW PHYSICS?

The difference with FNAL/MILC is **quite large**: 3σ or about 8%. The perturbative corrections to inclusive total 5%, the power corrections about 4%.

Right Handed currents disfavored since

$$|V_{cb}|_{incl} \simeq |V_{cb}| \left(1 + \frac{1}{2} |\delta|^2\right)$$
$$|V_{cb}|_{B \to D^*} \simeq |V_{cb}| \left(1 - \delta\right) \qquad \delta = \epsilon_R \frac{\tilde{V}_{cb}}{V_{cb}} \approx 0.08$$
$$|V_{cb}|_{B \to D} \simeq |V_{cb}| \left(1 + \delta\right)$$

CONCLUSIONS

- Theoretical efforts to improve the OPE approach to semileptonic decays continue. All effects O(α_sΛ²/m_b²) implemented. No sign of inconsistency in this approach so far. Calculation of O(α_sΛ³/m_b³) effects ongoing.
- Renewed activity on higher power corrections, unlikely to shift *V_{cb}* but need to be studied.
- **New fit** results: *V*_{*cb*} stable, competitive *m*_{*b*} determination based on precise *m*_{*c*}
- Exclusive/incl. tension in V_{cb} remains large and mysterious (3σ, 8%). It cannot be explained by right-handed current. Thorough investigations required at Belle-II.