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• Main goals

• HQET relations

• Zero-recoil FF for B→D* with HQSR

• Zero-recoil FF for B→D  in HQE 

• LCSR FFs, pQCD

• Interpolation formulas



Main goals

• Vcb determination possibly at a level competitive 
with lattice

• Tauonic decays: are R(D), R(D*) 1-2-3?σ away from 
SM? 

• Input for exclusive channel modelling in 
experiment, especially higher resonances, 
background estimates in precision Vub,Vcb analyses



 B→D and B→D* rates

In heavy quark limit all FF related to a single Isgur-Wise            
function ξ(w):        G(w)=F(w)

 ξ (w) is then normalized at zero recoil, ξ(1)=1 for all decays.  

w=v.v’



Beyond the HM limit

• Beyond heavy mass limit: several subleading IW functions, corrections 
to normalization -- in some cases protected by Luke’s theorem                            
F(w)=1+O(1/mQ

2),    G(w)=1+O(1/mQ)     mQ=mc, mb

• Since the ‘90s, a lot of  work with QCD sum rules, quark 
models, mostly including 1/mQ terms.     Falk, Neubert, Ligeti, Nir...

• Unfortunately limited accuracy, unsuited to present & future 
situation

• While HQET provides essential guidance, higher power 
corrections are not small and must be accounted for reliably  
(combining with experimental/lattice data etc.)



zero recoil sum rule

• Heavy quark sum rules put bounds on the zero recoil form 
factor F(1) for B→ D*                               Shifman,Vainshtein, Uraltsev 1996

• Recent calculation incorporates higher order effects and 
estimates inelastic contributions                     Mannel, Uraltsev, PG 2012

• Starting point OPE for axial vector current at zero recoil: 
expansion in 1/mc and 1/mb

• Estimate of  inelastic (non-resonant) contribution is the 
hard part



zero recoil sum rule
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OPE: Perturbative effects 

the cutoff  μ separates pert and non-pert physics

Power corrections start with 1/mc2 ΛQCD � εM , µ � 2mc

�
ξpertA (0.75GeV) = 0.98± 0.01

εM = µ = 0.75GeVWe choose
and include 1, 2 loop and 
higher BLM corrections
with no expansion in μ∕mc 

complete O(α2
s)
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O(αs) with αs = 0.3

O(α3
sβ0)



OPE: power corrections

matrix elements from moments fits & sum rule constraints
1∕m4 and 1∕m5 also known, matrix elements have been estimated
by ground state saturation

∆A � 0.090 + 0.029− 0.023− 0.013 + . . .

heavy quark expansion converges reasonably well
Including all errors for εM=0.75GeV

F(1) < 0.935

Mannel, Turczyk, Uraltsev 2010 
Heinonen, Mannel 2014

see Turczyk’s talk



The inelastic contribution
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OPE:

ε represents the average excitation energy mainly controlled by the   
_

lowest radial (1/2+) and D-wave (3/2+) excitations,  therefore 
about 700MeV

in terms of  little known non-local correlators of  the form

ρ3ππ + ρ3πG + ρ3S + ρ3A ≥ 0
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each of  them is integral of  spectral function 
with specific spin 
structure e.g.

O ∼ b̄πkπl b



estimating the non-local guys
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DExperimentally

within a ∼25% uncertainty

ρ3πG + ρ3A ≈ −0.45GeV3

From MB-MD and moments fits
_   _

These are strong indications that non-local guys are larger than expected. 
Based on a BPS expansion we get a minimum  Iinel(εM ∼ 0.75GeV) >∼ 0.14± 0.03

using the lowest value of  Iinel   and 
interpreting the total uncertainty as 
gaussian in perfect agreement with inclusive Vcb which implies 0.85±0.03 

F(1) = 0.86± 0.02

ρ3πG + ρ3A <∼ (−0.33± 0.17)GeV3



supporting evidence:
Continuum D(*)π

• Continuum contributions are included in 
non-local correlators. They are 1/Nc 
suppressed, but enhanced by HQS breaking

• We computed them in the soft pion 
approximation, up to a cutoff  on the pion 
momentum, including subleading effects

• B→Dπ dominates over B→D*π 

ID
(∗)π

inel ≈ 3÷ 5%

r=0.4

r=0.6

r=0.8

r=1

r =
gB∗Bπ

gD∗Dπ



“radial” contributions 
to total width

• Non-local guys determined by transitions to + parity light         
d.o.f.: 

•  Large Iinel  implies strong transitions to “radial” excitations (radial & 
D-wave states)

• Assuming a single multiplet of  “radials” for each jq hyperfine 
splitting constrains the strength of  B→“radials” 

• At leading order in the heavy quark expansion and neglecting v  
dependence of  the form factors one typically gets
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≈ 6÷ 7%

suggesting “radials” contribute significantly to the broad resonances, a 
possible solution of  1/2 vs 3/2 puzzle see also Bernlochner, Ligeti, Turczyk 



How to improve F(1) estimate

• Perturbative corrections to 1/m2  to I0  available, 
unlikely to be relevant. 1/m3  will soon be available 

• Better knowledge of  local ME, up to dim 8. More 
recent fits lower slightly I0

• Better knowledge of  Iinel  i.e. of  local guys. Lattice 
could help: values of  the hyperfine splitting for mQ 
between charm and bottom could help fixing the 
slope in mQ, and would have better converging HQE 
than MD-MD*.



B→D form factor & bps
Uraltsev, 2004

       G(1)=1+O(β2)        at any order in 1/mQ  

including perturbative and 1/mQ2 corrections for 

G(1) = 1.04± 0.01pert ± 0.01power

µ2
π(1GeV) <≈ 0.45GeV2

In BPS limit heavy flavor symmetry holds at all orders in 1/mQ .  
Hence G(1)=1 exactly and the IW function can be completely determined 
Jugeau et al 2006

One can expand around BPS in powers of  

Proceeds via vector current, zero recoil ff  receives 1/m corrections but all 
power correction vanish in the BPS limit where ground state satisfies

µ2
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G ρ3D = −ρ3LS ρ3A + ρ3πG + ρ3ππ + ρ3S = 0
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Light-cone sum rules

• Apply only to q2≈0 i.e. near max recoil

• Faller et al. 0809.0222: finite mc, expansion in 1/mb

• Limited accuracy (~25% on FFs)

• Reasonable agreement with experimental shapes

• Method applicable to higher resonances, see eg 
Bernlochner et al 1202.1834 (radials)

• Can be improved by computing radiative corrections and 
improving B meson DA



pQCD factorization provides an estimate at max recoil including 1/mQ 
corrections very similar in size and error   Kurimoto, Li, Sanda 2003  

Faller et al. 0809.0222   consistent G(w) in Fu et al, 1309.5723

B→D*

B→D



Phase space

phase space 
in B→Dlv

tau

mu

w→1

Most precise FF are at zero-recoil, where the rates 
vanish. Extrapolation is unavoidable now and will 

remain crucial for a long time.



CLN parameterization

• Caprini, Lellouch, Neubert proposed in 1998 a FF 
one-parameter form based on analiticity, unitarity 
and 1/mQ HQET near zero-recoil. For B→D 

• A 2% error is quoted, but this does not include 
higher power corrections

• CLN is widely used by experiments and theorists 





Summary
• Heavy quark sum rules: unitarity bound F(1)<0.935, 

including also D(*)π continuum F(1)<0.91.   

• Hyperfine splitting in B and D implies strong transitions to 
radial/D wave states, with implications for higher D states. 
The resulting F(1)=0.86(2) leads to |Vcb|= 41.5(1.3) 10-3 in 
agreement with inclusive Vcb 

• Uraltsev HQE estimate G(1)=1.04(2) in HQE leads to             
|Vcb|= 40.7(1.7) 10-3

• LCSR and pQCD constrain F,G at small q2 or max recoil, 
but limited accuracy

• Parameterization of  FF shape remains crucial. It should not 
rely on assumptions on power corrections.


