$B \rightarrow D, D^{*}, D^{* *}$ Form Factors from Lattice QCD

Andreas S. Kronfeld
Fermilab \& TUM IAS
Lattice Meets Continuum: QCD Calculations in Flavor Physics
29 September 2014

Outline

- $\left|V_{c b}\right|$ from $B \rightarrow D^{*} l v$ at zero recoil-arXiv:1403.0635
- $\left|V_{c b}\right|$ from $B \rightarrow D l v$ at all recoil-arXiv:1312.0155 and in preparation
- Strange interlude
- Extra form factors for non-SM contributions to $B \rightarrow D^{(*)} \tau v$-arXiv:1206.4992
- Other applications-arXiv:1202.6346
- Radial and orbital excitations: $B \rightarrow D^{* *} l v$ calculations
- Future Calculations

Numerical Lattice Gauge Theory

- The lattice provides a UV cutoff; a finite volume provides an IR cutoff; a finite Euclidean time leads to a nonzero temperature.
- Write a random number generator to create lattice gauge fields distributed with the weight of the functional integral.
- Fit correlations functions to get masses and matrix elements.
- Repeat several times while varying bare gauge coupling and bare masses.
- Find a trajectory with constant pion, kaon, D_{s}, B_{s}, masses (one for each quark) in dimensionless but physical units and obtain the continuum limit.
- Convert units to MeV.

Numerical Lattice Gauge Theory

- The lattice provides a UV cutoff; a finite volume provides an IR cutoff; a finite Euclidean time leads to a nonzero temperature.
- Write a random number generator to create lattice gauge fields distributed with the weight of the functional integral.
- Fit correlations functions to get masses and matrix elements.
- Repeat several times while varying bare gauge coupling and bare masses.
- Fino in d requires wisdom and effective field theory
- Convert units to MeV.

$\left|V_{c b}\right|$ from $B \rightarrow D^{*} l v$ at zero recoil

Basic Formulas

- Matrix elements:

$$
\begin{aligned}
\frac{\left\langle D^{*}\left(p_{D^{*}}, \varepsilon^{(\alpha)}\right)\right| \mathscr{A}^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{2 M_{D^{*}}}} & =\frac{i}{2} \varepsilon_{v}^{(\alpha)^{*}}\left[g^{\mu v}(1+w) h_{A_{1}}(w)-v_{B}^{v}\left(v_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right)\right] \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \varepsilon^{(\alpha)}\right)\right| \mathscr{V}^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{2 M_{D^{*}}}} & =\frac{1}{2} \varepsilon^{\mu \nu}{ }_{\rho \sigma} \varepsilon_{v}^{(\alpha)^{*}} v_{B}^{\rho} v_{D^{*}}^{\sigma} h_{V}(w)
\end{aligned}
$$

- Differential decay rate:

$$
\frac{d \Gamma}{d w}=\frac{G_{F}^{2} M_{D^{*}}^{3}}{4 \pi^{3}}\left(M_{B}-M_{D^{*}}\right)^{2}\left(w^{2}-1\right)^{1 / 2}\left|\eta_{\mathrm{EW}}\right|^{2}\left|V_{c b}\right|^{2} \chi(w)|\mathscr{F}(w)|^{2}
$$

- Zero recoil when $w \equiv v_{B} \cdot v_{D^{*}} \rightarrow 1$. Then, $\chi(w=1)=1$, and

$$
\mathscr{F}(1)=h_{A_{1}}(1) .
$$

$\left|V_{\mathrm{cb}}\right|$ Determination

- Divide $d \Gamma / d w$ by "known stuff" and phase space factor $\left(w^{2}-1\right)^{1 / 2} \chi(w)$.
- Extrapolate $w \rightarrow 1$ via a fit, guided by analyticity, unitarity, \& HQET to obtain $\left|\eta_{\mathrm{EW}}\right|\left|V_{c b}\right| \mathscr{F}(1)$.
- The factor $\left|\eta_{\text {Ew }}\right|$ includes a large log from W/Z/ү boxes [Sirlin, 1982].

CLEO, arXiv:hep-ex/0210040

- It also accounts for long-distance soft photons, which are very small for charged B decays and "huge" ($\sim 2 \%$) for neutral B decays.
- The form factor is calculated in QCD, e.g., with lattice gauge theory.

Error Budgets for $\mathscr{F}(1)=h_{A_{1}}(1),\left|V_{\mathrm{cb}}\right|$

Fermilab/MILC, arXiv:1403.0635

- Some entries are not very interesting: statistics, scale error, isospin.
- Discuss others in turn.
- Note in passing: r_{1} is defined by

$$
r_{1}^{2} F\left(r_{1}\right)=1
$$

where F is the force between static sources.

- Compute r_{1} / a on every lattice and form dimensionless quantities, $\left(r_{1} / a\right)\left(a f_{\pi}\right)$.
- Define $r_{1}=\left(r_{1} f_{\pi}\right)_{a \rightarrow 0} / f_{\pi}^{\mathrm{PDG}}$.

Uncertainty	$h_{A_{1}}(1)$
Statistics	0.4%
Scale $\left(r_{1}\right)$ error	0.1%
$\chi \mathrm{PT}$ fits	0.5%
$g_{D^{*} D \pi}$	0.3%
Discretization errors	1.0%
Perturbation theory	0.4%
Isospin	0.1%
Total	1.4%

Uncertainty	$\left\|V_{c b}\right\|$
QCD	1.4%
QED	0.5%
Expt	1.3%

Chiral Perturbation Theory

Fermilab/MILC, arXiv:1403.0635

- The light quarks are too massive, so the pion cloud is too small.
- Fix with chiral perturbation theory:
- NLO expression available;
- includes mods for discretization;
- model larger light masses with analytic terms of NNLO.
- Note the cusp from $D \pi$ threshold.

The $g_{D^{*} D \pi}$ Coupling

Fermilab/MILC, arXiv:1403.0635

- The chiral logs are proportional to

$$
g_{D^{*} D \pi}^{2} /\left(4 \pi f_{\pi}\right)^{2}
$$

but $\sim 10^{-3}$ where we have data.

- Take $g_{D^{*} D \pi}=0.53 \pm 0.08$ based on

0.53(3)(3)	$n_{f}=2$	arXiv:1210.5410
0.55(6)	$a \neq 0$	arXiv:1210.0869
0.57(5)(6)	$B^{*} B \pi$	arXiv:1311.2251
0.45 (5)	static	arXiv:1203.3378
0.570(6)	BaBar	arXiv:1304.5657

- Need much larger $g_{D^{*} D \pi}$ or huge NNLO log to reach, e.g., 0.87.
$\left(0.4_{\text {choices }}+0.1_{\text {NNLO }} \log \right)_{\chi \text { PT }} \oplus 0.3_{g_{D^{*} D \pi}}$

HQET Theory of Cutoff Effects

- LGT with Wilson fermions and continuum QCD enjoy heavy-quark symmetry:
- lattice version is stronger: the radiative corrections are HQ symmetric.
- Therefore, both can be described by HQET:

$$
\begin{aligned}
\mathscr{L}_{\mathrm{LGT}} \doteq & \bar{h}\left(i v \cdot D-m_{1}\right) h+\frac{\bar{h} D_{\perp}^{2} h}{2 m_{2}}+\frac{\bar{h} s \cdot B h}{2 m_{B}}+\frac{\bar{h}\left[D_{\perp}^{\alpha}, i E_{\alpha}\right] h}{8 m_{D}^{2}}+\frac{\bar{h} s_{\alpha \beta}\left\{D_{\perp}^{\alpha}, i E^{\beta}\right\} h}{4 m_{E}^{2}}+\cdots, \\
\mathscr{L}_{\mathrm{QCD}} \doteq & \bar{h}(i v \cdot D-m) h+\frac{\bar{h} D_{\perp}^{2} h}{2 m}+\frac{z_{B} \bar{h} s \cdot B h}{2 m}+\frac{z_{D} \bar{h}\left[D_{\perp}^{\alpha}, i E_{\alpha}\right] h}{8 m^{2}}+\frac{z_{E} \bar{h} s_{\alpha \beta}\left\{D_{\perp}^{\alpha}, i E^{\beta}\right\} h}{4 m^{2}}+\cdots \\
& V^{\mu} \doteq \bar{C}_{V_{\|}}^{\mathrm{LGT}} v^{\mu} \bar{c}_{v^{\prime}} b_{v}+\bar{C}_{V_{\perp}}^{\mathrm{LGT}} \bar{c}_{\nu^{\prime}} i \gamma_{\perp}^{\mu} b_{v}+\bar{C}_{V_{v^{\prime}}}^{\mathrm{LGT}} v_{\perp}^{\prime \mu} \bar{c}_{v^{\prime}} b_{v}-\sum_{a=1}^{14} \bar{B}_{V a}^{\mathrm{LGT}} \overline{\mathscr{Q}}_{V a}^{\mu}+\cdots \\
& \mathscr{V}^{\mu} \doteq \bar{C}_{V_{\|}}^{\mathrm{QCD}} \nu^{\mu} \bar{c}_{v^{\prime}} b_{v}+\bar{C}_{V_{\perp}}^{\mathrm{QCD}} \bar{c}_{\nu^{\prime}} i \gamma_{\perp}^{\mu} b_{v}+\bar{C}_{V_{v^{\prime}}}^{\mathrm{QCD}} v_{\perp}^{\prime \mu} \bar{c}_{\nu^{\prime}} b_{v}-\sum_{a=1}^{14} \bar{B}_{V a}^{\mathrm{QCD}} \overline{\mathscr{Q}}_{V a}^{\mu}+\cdots
\end{aligned}
$$

Matching

$$
\begin{aligned}
& V^{\mu} \doteq \bar{C}_{V_{\|}}^{\mathrm{LGT}} v^{\mu} \bar{c}_{v^{\prime}} b_{v}+\bar{C}_{V_{\perp}}^{\mathrm{LGT}} \bar{c}_{v^{\prime}} i \gamma_{\perp}^{\mu} b_{v}+\bar{C}_{V_{v^{\prime}}}^{\mathrm{LGT}} v_{\perp}^{\prime \mu} \bar{c}_{v^{\prime}} b_{v}-\sum_{a=1}^{14} \bar{B}_{V a}^{\mathrm{LGT}} \overline{\mathscr{Q}}_{V a}^{\mu}+\cdots, \\
& \mathscr{V}^{\mu} \doteq \bar{C}_{V_{\|}}^{\mathrm{QCD}} v^{\mu} \bar{c}_{v^{\prime}} b_{v}+\bar{C}_{V_{\perp}}^{\mathrm{QCD}} \bar{c}_{v^{\prime}} i \gamma_{\perp}^{\mu} b_{v}+\bar{C}_{V_{v^{\prime}}}^{\mathrm{QCD}} v_{\perp}^{\prime \mu} \bar{c}_{v^{\prime}} b_{v}-\sum_{a=1}^{14} \bar{B}_{V a}^{\mathrm{QCD}} \overline{\mathscr{Q}}_{V a}^{\mu}+\cdots
\end{aligned}
$$

- Then the current $Z_{V} V$ is well matched if

$$
Z_{V^{\mu}}=\frac{\bar{C}_{V_{\|}}^{\mathrm{QCD}}}{\bar{C}_{V_{\|}}^{\mathrm{LGT}}}
$$

- Note that HQET here is a scaffolding: we compute the Z_{V} directly.
- In practice: compute degenerate-mass Z_{V} nonperturbatively and use oneloop PT for $\rho_{A_{c b}^{i}}=Z_{A_{c b}^{i}} Z_{V_{b b}^{4}}^{-1 / 2} Z_{V_{c c}^{4}}^{-1 / 2}$.

Discretization Effects

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{LGT}} \doteq \bar{h}\left(i v \cdot D-m_{1}\right) h+\frac{\bar{h} D_{\perp}^{2} h}{2 m_{2}}+\frac{\bar{h} s \cdot B h}{2 m_{B}}+\frac{\bar{h}\left[D_{\perp}^{\alpha}, i E_{\alpha}\right] h}{8 m_{D}^{2}}+\frac{\bar{h} s_{\alpha \beta}\left\{D_{\perp}^{\alpha}, i E^{\beta}\right\} h}{4 m_{E}^{2}}+\cdots, \\
& \mathscr{L}_{\mathrm{QCD}} \doteq \bar{h}(i v \cdot D-m) h+\frac{\bar{h} D_{\perp}^{2} h}{2 m}+\frac{z_{B} \bar{h} s \cdot B h}{2 m}+\frac{z_{D} \bar{h}\left[D_{\perp}^{\alpha}, i E_{\alpha}\right] h}{8 m^{2}}+\frac{z_{E} \bar{h} s_{\alpha \beta}\left\{D_{\perp}^{\alpha}, i E^{\beta}\right\} h}{4 m^{2}}+\cdots .
\end{aligned}
$$

- To estimate discretization effects, take the difference between the HQET descriptions of LGT and QCD.
- Again, HQET becomes a scaffolding:
- coefficients depend on how HQET is UV regulated and renormalized;
- dependence drops out in the difference.

HQET Matching

In practice

- Dim 5 (4) in Lagrangian (current), use Ansatz for unknown one-loop coefficient difference.
- Dim 6 (4), use known tree-level coefficient difference.
- Use "reasonable" values for HQET quantities: $\quad \mu_{G}^{2}=(603 \mathrm{MeV})^{2}$

$$
\begin{aligned}
\mu_{\pi}^{2} & =(651 \pm 32 \mathrm{MeV})^{2} \\
\left|R_{1}+3 R_{2}+3 E\right| & \lesssim(450 \mathrm{MeV})^{2}
\end{aligned}
$$

- Compare to data.

EW and QED

- The "Sirlin factor" is well known throughout semileptonic decays:

$$
\begin{align*}
\eta_{\mathrm{EW}} & =1+\frac{\alpha}{\pi}\left[\ln \frac{m_{W}}{\mu}+\tan ^{2} \theta_{W} \frac{m_{W}^{2}}{m_{Z}^{2}-m_{W}^{2}} \ln \frac{m_{Z}}{m_{W}}\right] \\
& =1+\frac{\alpha}{\pi} \ln \frac{m_{Z}}{\mu} \quad(\mathrm{SM}) \tag{SM}
\end{align*}
$$

- At long distances, there are also universal radiative corrections, which are quite large when the final state has Coulomb attraction:

$$
\frac{\alpha}{2 \pi}(i \pi)(-i \pi)=\frac{1}{2} \pi \alpha
$$

- Experiments must separate neutral and charged B decays.
- Finally, there are radiative corrections for photons of energy Λ_{QCD}.

$\left|V_{c b}\right|$ from $B \rightarrow D l v$ at all recoil

Basic Formulas

- Matrix element:

$$
\frac{\left\langle D\left(p_{D}\right)\right| \mathscr{V}^{\mu}\left|B\left(p_{B}\right)\right\rangle}{\sqrt{M_{B} M_{D}}}=h_{+}(w)\left(v_{B}+v_{D}\right)^{\mu}+h_{-}(w)\left(v_{B}-v_{D}\right)^{\mu}
$$

- Differential decay rate:

$$
\frac{d \Gamma}{d w}=\frac{G_{F}^{2} M_{D}^{3}}{48 \pi^{3}}\left(M_{B}+M_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2}\left|\eta_{\mathrm{EW}}\right|^{2}\left|V_{c b}\right|^{2} \mathscr{G}(w)^{2}
$$

where

$$
\begin{aligned}
\mathscr{G}(w) & =h_{+}(w)+\frac{M_{B}-M_{D}}{M_{B}+M_{D}} h_{-}(w) \\
& =\frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+}\left(q^{2}\right)
\end{aligned}
$$

with $q^{2}=M_{B}^{2}+M_{D}^{2}-2 w M_{B} M_{D}$.

$\left|V_{c b}\right|$ Determination

- Could follow same procedure, but now phase space factor is $\left(w^{2}-1\right)^{3 / 2}$.
- Also $h_{-}(1) \neq 0$: HQS constraint weak.
- As with $K \rightarrow \pi, D \rightarrow K, B \rightarrow \pi$, etc., obtain full q^{2} aka w dependence.
- Simultaneous fit to experimental data \& lattice QCD: obtain $\left|V_{c b}\right|$ from relative normalization.

Chiral-continuum extrapolation

Fermilab/MILC, arXiv:1312.0155

- As before, use NLO logs, NNLO analytic, and try various combinations.
- Cyan band shows result for $a \rightarrow 0, m_{\mathrm{PS}}^{2} \rightarrow m_{\pi}^{2}$.
- After 1312.0155, we found a better way to match the spatial component of the current: significant change in h_{-}, but small change in f_{+} and f_{0}.

Chiral-continuum extrapolation

Fermilab/MILC, arXiv:1312.0155

- As before, use NLO logs, NNLO analytic, and try various combinations.
- Cyan band shows result for $a \rightarrow 0, m_{\mathrm{PS}}^{2} \rightarrow m_{\pi}^{2}$.
- After 1312.0155, we found a better way to match the spatial component of the current: significant change in h_{-}, but small change in f_{+} and f_{0}.

Extrapolate over all w

Fermilab/MILC, arXiv:1312.0155

- Map the whole q^{2} axis onto the unit disk:

$$
z(w)=\frac{\sqrt{1+w}-\sqrt{2}}{\sqrt{1+w}+\sqrt{2}} \in[0,0.0645]
$$

- Write
timelike resonance decay
spacelike

$$
f_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{n=0}^{\infty} a_{i, n} z^{n}, \quad i=+, 0
$$

where the "Blaschke" factor $P_{i}(z)$ remove subthreshold poles, and $\phi_{i}(z)$ is a convenient "outer" function.

- Unitarity constrains the expansion coefficients. With our choice for $\phi_{i}(z)$,

$$
\sum_{n=0}^{N}\left|a_{i, n}\right|^{2} \leq 1
$$

$\left|V_{c b}\right|$ Determination

Fermilab/MILC, arXiv:1312.0155

- Fit imposing kinematic constraint.
- Refit with floating norm for expt.

Consistency

Results for $\left|V_{\mathrm{cb}}\right|$

$B_{s} \rightarrow D_{s} l v$

Strange Spectator

- Lattice QCD with strange quarks needs less of a chiral extrapolation.
- Atoui et alia [arXiv:1310.5238] compute zero-recoil form factors $\left(n_{f}=2\right)$:

$$
\mathscr{G}(1)=1.052(46), \quad \frac{f_{0}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}=0.77(2), \quad \frac{f_{T}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}=1.08(7)
$$

at $q^{2}=11.6 \mathrm{GeV}^{2}$.

- Employ a sequence of ratios designed to be close to 1 , and guaranteed to be 1 when $m_{h}=m_{c}$ and when $m_{h} \rightarrow \infty$. Here $m_{h}=\lambda^{h} m_{c}$, such that $\lambda^{9} m_{c}=m_{b}$.
- Employed interpolations in $1 / m_{h}$ omit logarithmic m_{h} dependence.

Extra form factors for non-SM $B \rightarrow D^{(*)} \tau v$

New Physics in $B \rightarrow D^{(*)} \tau v$
BaBar, arXiv:1205.5442

- BaBar has presented evidence for an excess in both channels:
- 2.0σ for $R(D)$;
- 2.7σ for $R\left(D^{*}\right)$;
- 3.4σ combined.
- Using estimates of form factors
 from HQET and quenched QCD.

Form Factors for $B \rightarrow D^{(*)} \tau v$

Fermilab/MILC, arXiv:1206.4992

- With $n_{f}=2+1$ lattice QCD, the tension lessens a bit:
- 1.7σ for $R(D)$.
- Similar conclusions in arXiv:1206.4977.
- Analogous work for $R\left(D^{*}\right)$ yet to be carried out.

Other applications

Form Factor Ratios for $\mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$

Fleischer, Serra, Tuning, arXiv:1004.3982, arXiv:1012.2784

- Use nonleptonic B and B_{s} decays to determine the fragmentation ratio $f_{s} f_{d}$:
- needed to measure $\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$at hadron colliders.
- With a factorization assumption, need the following two ratios:

$$
\frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{K}^{2}\right)} \quad \frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{\pi}^{2}\right)}
$$

- With a subset of the data used above for , Fermilab/MILC computed these ratios [arXiv:1202.6346], yielding

$$
\frac{f_{s}}{f_{d}}=0.283(27)_{\mathrm{stat}}(19)_{\mathrm{syst}}(24)_{\mathrm{theo}} \quad \text { or } \quad 0.286(16)_{\mathrm{stat}}(21)_{\mathrm{syst}}(26)_{\mathrm{lat}}(22)_{\mathrm{NE}}
$$

which is competitive with other (experimental) methods.

$B \rightarrow D^{* *} l v$ Calculations

Radial and Orbital Excitation Spectrum

- Decays to $D^{* *}$ seen in experiments.
- Rich excitation spectrum of D mesons:
- $j=3 / 2$ are wide (aka narrow);
- $j=1 / 2$ are very wide (aka wide).
- Poses re-scattering challenges in Euclidean finite volume:
- spectroscopy still leading edge;

- form factors in factorization, e.g., arXiv:1301.7336: $f_{D^{\prime}} / f_{D}=0.57(16)$.

Uraltsev Sum Rules

- Two form factors in $B \rightarrow D^{* *} l v: \tau_{j}, j=3 / 2,1 / 2$.
- Uraltsev sum rule: $U=\sum_{n}\left|\tau_{3 / 2}^{(n)}(1)\right|^{2}-\left|\tau_{1 / 2}^{(n)}(1)\right|^{2}=\frac{1}{4}$, sum over excitations.
- Pilot calculations of the form factors in static limit, with incomplete error budgets (as the authors state):
- $U^{(0)}=0.13(8)(?)$ [hep-lat/0406031];
- $U^{(0)}=0.17-0.21$ [arXiv:0903.2298].
- Suggests the lowest-lying contributions nearly saturate the sum rule.

Future calculations

b quarks as light quarks

- Until now, all lattice treatments of heavy quarks use HQET (even those who say they don't).
- But now, several lattice groups are planning (or have started) to generate a suite of ensembles with $m_{b} a<1$, even $m_{b} a \ll 1$.
- This transition has already happened for lattice D physics, which now resembles K physics more so than B physics.
- Some of the uncertainties will simply disappear or simplify: matching driven by conserved densities; ensembles with physical light quarks;
- Remains to be seen how well the current round of calculations hold up.

