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‣ EFTs such as HQET have power divergences  
                             
 
which must be subtracted non-perturbatively in  
order to have a continuum limit  

‣ Power (1/M) corrections are only defined when the 
leading term is computed non-perturbatively  

‣ late asymptotics of QCD perturbation theory  
for heavy-light physics 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Why non-perturbative?

All of this is taken care of by NP HQET:  

 NP matching of HQET and QCD  
 No predictions are lost
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On QCD PT for heavy-light systems
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at the leading order in 1/M
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Compare di↵erent orders
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‣ b-mass not in asymptotic convergence region
‣ This is a worry for perturbative matching and renormalisation
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‣ picture looks different depending on the order of PT 

‣ extrapolation to static limit not that convincing  

‣ what error to associate to perturbative matching  

!
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Path integral with weight (directly on the lattice)
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NP matching: QCD — HQET
A finite volume, recursive strategy
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NP matching: QCD = HQET

1. Lagrangian + currents

QCD HQET 
parameter free

HQET 
bare “correlation functions”

HQET 
parameters

Michele Della Morte, Samantha Dooling, Jochen Heitger, Dirk Hesse, Hubert Simma JHEP 1405 (2014) 060
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The ALPHA Collaboration’s B-physics programme is based on a non-perturbative

matching of HQET to QCD in finite volume. Let us briefly recall it for later convenience.

The HQET Lagrangian

L HQET(x) = L stat(x) +mbareψh(x)ψh(x)− ωkinOkin(x)− ωspinOspin(x) , (1.1)

at leading order in 1/mh is just the (static) term

L stat(x) = ψh(x)D0 ψh(x) (1.2)

(plus the mass term that only leads to a shift of the energy levels). At order 1/mh, two

additional interaction terms are included

Okin(x) = ψh(x)D
2ψh(x) , Ospin(x) = ψh(x)σ ·Bψh(x) . (1.3)

They represent the kinetic energy from heavy quark’s residual motion and the chromomag-

netic interaction with the gluon field. D2, B, and D0 are defined in ref. [7]. Thus, the

HQET Lagrangian has three parameters: mbare, ωkin, and ωspin. The predictivity of the

effective theory is only granted, once these HQET parameters have been fixed by a non-

perturbative matching to QCD [5, 21]: three (properly renormalized) QCD observables, Φi

(i = 1, 2, 3), evaluated in the continuum limit of finite-volume QCD, are matched to their

counterparts computed in HQET by imposing

ΦQCD
i (L,mh, 0) = ΦHQET

i (L,mh, a) , (1.4)

for any value of the lattice spacing a. While the l.h.s. of this “matching” equation is defined

in the continuum,

ΦQCD
i (L,mh, 0) = lim

a→0
ΦQCD
i (L,mh, a) , (1.5)

the quantities ΦHQET
i are understood to be expanded up to a given order in 1/mh (NLO in

our setup) and computed in HQET at a finite lattice spacing. By solving this system of (at

this point three) matching equations, the resulting HQET parameters become functions of

mh and a and can be pushed to lattice spacings for use in phenomenological applications

with large-volume simulations by step-scaling methods. For more details, the reader may

consult, e.g., refs. [5, 7, 10, 22], where this programme has been completed in the quenched

approximation and for two flavours of O(a) improved Wilson fermions.

For many relevant phenomenological applications in heavy quark physics, one also

needs (correlation functions of) composite fields OQCD(x), which are local combinations

of the fundamental fields. The corresponding effective operators typically represent elec-

troweak or other non-QCD interactions. In HQET such operators are written as linear

combinations

OHQET(mh) = ZO

{
Ostat +

∑
cnOn

}
= OQCD(mh) +O(1/m2

h) , (1.6)

where the equality is meant for matrix elements of corresponding states in the fundamental

(QCD) and effective (HQET) theories. The r.h.s. of the first equation above in general
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where all correlators on the r.h.s. are computed in the static approximation. The only

place where the parameter mbare appears is the factor e−mbarexC , with xC related to the

time distances of the heavy (static) quark fields entering in CHQET
J . Aside from ZHQET

J ,

all other (wave-function) renormalization factors contributing to CHQET
J are collected in

ZHQET
C .

In the correlation functions on the r.h.s. of eq. (2.2), the leading-order term Cstat
J

has just one insertion of J stat (instead of J), while Ckin/spin
J differ from Cstat

J by an extra

insertion (summed over the entire space-time volume) of the 1/mh-terms Okin or Ospin from

the Lagrangian. The other next-to-leading contributions C1/m
Jn

have an insertion of one of

the higher-dimensional operators Jn from the expansion in eq. (2.1).

The observables Φi are then defined as suitable combinations of such correlation func-

tions (e.g., logarithms of ratios, see section 3 for explicit definitions). Thus, the renor-

malization factor ZHQET
C cancels, while a possibly remaining factor ZHQET

J needs to be

expanded in 1/mh in order to consistently keep only terms up to order 1/mh in eq. (2.2).

Moreover, only one of the observables, say Φ1, is left with an explicit dependence on mbare.

By combining all HQET parameters into a vector

ω = (mbare, ωkin, ωspin, cJ1 , . . . , lnZHQET
J , . . .)T , (2.3)

the HQET expansion of the observables can be written in the compact form

ΦHQET
i (L,M, a) = ηi(L, a) + ϕj

i (L, a)ωj(M,a) +O(1/m2
h) , (2.4)

where M is the Renormalization Group Invariant (RGI) heavy quark mass and the vector

η accounts for the contribution of the static terms Cstat
J in the correlators involved. As

mentioned in the introduction, because the matching is performed at a finite value of

the renormalized quark mass of QCD, the parameters get a non-trivial M -dependence

even when working only in the static approximation of HQET. Note that in general and

non-perturbatively, only the combination of HQET quantities, which enters on the r.h.s. of

eq. (2.4), is expected to have a continuum limit. The tree-level approximation is exceptional

in this respect as each individual term on the r.h.s. has a well defined continuum limit in

that case.

The matrix ϕj
i of eq. (2.4) reflects the structure of the matching equations (1.4). To

illustrate its general structure, we group the parameters into blocks (mbare), (ωkin, ωspin),

(cJi , ZJ), (cJ ′
i
, ZJ ′), (cJ ′′

i
, ZJ ′′), . . . , and assume that J is the current which is used in Φ1.

A suitable choice of the other observables then leads to the following natural form of the

matrix ϕj
i :

• In the first column all entries, except for ϕ1
1, vanish.

• The first row has non-vanishing ϕ2
1 and ϕ3

1 corresponding to contributions from ωkin

and ωspin to Φ1. In addition, there may be non-zero ϕj
1 with j from a single block,

which corresponds to the current used in Φ1. In our case, this is due to the A0,1-term,

which enters in our matching condition for mbare (see later). However, it is easy to

show that the corresponding ϕ4
1 would vanish in the large-L limit.
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• The rest has a simple block structure, with non-zero blocks only in the second block-

column (corresponding to contributions from ωkin and ωspin) and in the blocks on the

diagonal (corresponding to the mixings in the last term of eq. (2.2)).

Thus, we schematically have the following block structure:

ϕ =

⎛

⎜⎜⎜⎜⎜⎝

ϕ1
1 ∗ ∗ 0 0

0 ∗ 0 0 0

0 ∗ ∗ 0 0

0 ∗ 0 ∗ 0
0 ∗ 0 0 ∗

⎞

⎟⎟⎟⎟⎟⎠
.

Each time an additional (effective) operator J ′ is included, a new set of observables Φi

with i ∈ IJ ′ can be added such that ϕj
i , and hence the matching equations, have the above

block structure. The system can therefore always be solved simply by block-wise backward

substitution in order to determine the HQET parameters.

2.1 Heavy-light axial current in HQET

As an example of this general structure of the matching equations, we recall the explicit

form of the (renormalized) heavy-light axial current in HQET. The time component is

AHQET
0 (x) = ZHQET

A0

[
Astat

0 (x) +
2∑

i=1

cA0,iA0,i(x)

]
, (2.5)

with the leading-order (static) term

Astat
µ (x) = ψℓ(x)γµγ5ψh(x) (2.6)

and two additional dimension-four contributions

A0,1(x) = ψℓ(x)
1

2
γ5γi(∇si −

←−∇si)ψh(x) , (2.7)

A0,2(x) = ψℓ(x)
1

2
γ5γi(∇si +

←−∇si)ψh(x) , (2.8)

where all derivatives are symmetric,

∂̃i =
1

2
(∂i + ∂∗i) ,

←−∇si =
1

2
(
←−∇ i +

←−∇∗i) , ∇si =
1

2
(∇i +∇∗i) . (2.9)

A comment on the definition of the covariant derivatives is in order here. On a finite

lattice, the action of the covariant derivative on a fermion field is given by

∇µψ(x) =
1

a
[λµU(x, µ)ψ(x+ aµ̂)− ψ(x)] , (2.10)

∇∗µψ(x) =
1

a

[
ψ(x)− λ−1

µ U(x− aµ̂, µ)−1ψ(x− aµ̂
]
, (2.11)

where µ̂ is a unit vector in direction µ. The left action is defined as

ψ(x)
←−∇µ =

1

a

[
ψ(x+ aµ̂)U(x, µ)−1λ−1

µ − ψ(x)
]
, (2.12)

ψ(x)
←−∇∗µ =

1

a

[
ψ(x)− ψ(x− aµ̂)U(x− aµ̂, µ)λµ

]
. (2.13)
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NP matching: QCD — HQET

2. Example of a �i

Dirk Hesse, Rainer Sommer JHEP 1302 (2013) 115 

�QCD ⇠ �ZV
FV0 (T/2; ✓, z)

[Fud
1 (✓)Fbd

1 (✓, z)]1/2
,

�QCD ⇠ �ZA

J

1
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[Kud
1 (✓)Fbd

1 (✓, z)]1/2
,

3

bu

d
Dirichlet (SF)

b

d

u

d

1/2

�QCD ⇠ �ZV
FV0 (T/2; ✓, z)

[Fud
1 (✓)Fbd

1 (✓, z)]1/2
,

�QCD ⇠ �ZA

J

1
A1

(T/2; ✓, z)

[Kud
1 (✓)Fbd

1 (✓, z)]1/2
,

V

ub
0

3

✓/L quark momentum 
kinematical parameter

http://arxiv.org/find/hep-lat/1/au:+Hesse_D/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Sommer_R/0/1/0/all/0/1
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3. complete set of parameters with  
    heavy-light flavour currents
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We note in passing that the mixing of Astat
k with Ak,2 and Ak,4 is due to the breaking of

spin-symmetry by Ospin. Similarly, the mixing of the static currents with the (combinations

of) operators, like A0,1 +A0,2, Ak,1 +Ak,3, and Ak,2 +Ak,4, where the derivative only acts

on the heavy quark, are due to the breaking of local heavy-flavour conservation by Okin.

In refs. [7, 10] only the time component of the axial current has been considered,

and A0,2 has not been included because it does not contribute to correlation functions at

(total) zero momentum, such as those typically used to compute decay constants. The

corresponding 5 HQET parameters can then be determined from a restricted system of

matching equations which has the form (see ref. [7] for a precise definition of the quantities

in the matrix below)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LΓP

R1

3
4 ln

(
f1
k1

)

RA

ln
(
−fA√
f1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LΓstat

Rstat
1

0

Rstat
A

ζA

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L LΓkin LΓspin LΓδA 0

0 Rkin
1 0 0 0

0 0 ρspin1 0 0

0 Rkin
A Rspin

A RδA 0

0 ψkin ψspin ρδA 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mbare

ωkin

ωspin

ac(1)A

lnZHQET
A

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3 Matching of heavy-light currents at O(1/mh)

We now consider the full system of 19 matching equations for HQET including the currents

J = A0, Ak, V0, Vk. We arrange the parameters in a vector ω ≡ ωi as follows:

i ωi origin

1, 2, 3 mbare, ωkin, ωkin L HQET

4, . . . , 6 cA0,1 , cA0,2 , lnZHQET
A0

AHQET
0

7, . . . , 11 cAk,1 , cAk,2 , cAk,3 , cAk,4 , lnZHQET

A⃗
AHQET

k

12 . . . , 14 cV0,1 , cV0,2 , lnZHQET
V0

V HQET
0

15, . . . , 19 cVk,1 , cVk,2 , cVk,3 , cVk,4 , lnZHQET

V⃗
V HQET
k

where in the last column we have indicated for each parameter, whether it enters the HQET

Lagrangian or the expansion of a current component. We limit our more detailed discussion

to the parameters in L HQET, A0 and Ak (i.e., ωi with 1 ≤ i ≤ 11). The matching equations

for V0 and Vk are simply obtained by generalizing those for A0 and Ak, and further details

can be found in appendix B.

3.1 Definition of the correlation functions in QCD

As in previous work [5, 7, 10], we define the matching observables in the SF with homo-

geneous boundary conditions at x0 = 0 and x0 = T [16–18]. Correlation functions can be
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1. Introduction

The masses of the quarks are among the fundamental param-
eters of the Standard Model (SM), and as such hold considerable
interest. Heavy quark masses, in particular, enter as parameters
in various perturbative predictions of interesting decay rates, e.g.
B → Xsγ or inclusive B → u or B → c rates. Such decays yield
useful constraints for the CKM matrix and, in principle, options to
obtain hints for physics beyond the Standard Model. It is therefore
desirable to minimize the uncertainty in mb entering these predic-
tions.

The b-quark mass also enters the prediction for the cross sec-
tion of the H → bb decay, which is the mode with the largest
branching ratio for an SM-like Higgs with a mass of 126 GeV. In
the future, tests of this coupling will help providing further char-
acterizations of the new boson.

* Corresponding author.

The most accurate determinations of the b-quark mass reported
in the PDG review [1–25] come from comparisons of experimental
results for the e+e− → bb cross section to theoretical predictions
from perturbation theory and sum-rules.

Like each of these approaches, the first-principles determina-
tion of mb from lattice field theory has its own difficulties. Rela-
tivistic b-quarks cannot yet be reliably simulated on the lattice as
their Compton wavelength is much shorter than any lattice spac-
ing which can be currently reached in large-volume simulations. To
circumvent this limitation, two approaches have been used, viz. ex-
trapolating simulation results obtained in the vicinity of the charm
quark mass to the b-quark region [24–28], and the use of effec-
tive field theories, such as NRQCD [29,30]. The approach of the
ALPHA Collaboration is based on Heavy Quark Effective Theory
(HQET) [31–34], which provides a description of heavy quarks in
the context of heavy–light mesons that can be employed in lat-
tice QCD simulations if the parameters of HQET are determined
by matching HQET to QCD non-perturbatively [35,36]. The match-
ing at order O(1/mh) has been performed in both the quenched
(Nf = 0) and the Nf = 2 theories by our collaboration [37,38]. The

http://dx.doi.org/10.1016/j.physletb.2014.01.046
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
SCOAP3.
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1. Introduction

In the ongoing quest for new effects in high-energy particle 
physics, flavour physics provides information complementary to 
that from the direct searches performed at ATLAS and CMS. In-
deed, low-energy processes and rare events can be sensitive probes 
of New Physics, in particular when they are mediated by vir-
tual loops, in which non-Standard Model particles can circulate, 
or when they involve new couplings occurring at tree-level. How-
ever, any analysis of experimental data in the quark sector depends 
on theoretical inputs, such as hadron decay constants, that encode 
the long-distance dynamics of QCD, which cannot be reliably esti-
mated in perturbation theory.

In this regard, B-physics is an emblematic case. For example, 
it is crucial to understand the origin of the current discrepancy 

* Corresponding author.

in the Cabibbo–Kobayashi–Maskawa matrix element V ub measured 
through the exclusive processes B → τν [1,2] and B → πℓν [3,4], 
where the latter makes use of the B → π form factors computed 
on the lattice. Is it due to an experimental problem, or due to 
New Physics such as the presence of a new, right-handed, tree-
level coupling to a charged Higgs boson in the B leptonic decay 
[5], or due to a severe underestimate of the uncertainty on the 
decay constant fB governing that decay. For comparison, the re-
cent measurements of B(Bs → µ+µ−) at LHC [6,7] are in excellent 
agreement with the Standard Model prediction [8,9], where the 
latter depends on the decay constant fBs , whose estimate is dom-
inated by lattice results.

The methods that have been used to estimate fB and fBs in-
clude applications of quark models, as discussed in [10–12] and 
references therein, and QCD sum rules in the analysis of two-
point B-meson correlators [13–16]. Several strategies have been 
proposed to determine fB and fBs from first principles using lattice
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Results: parameters, b-quark mass, Nf=2

Nf Ref. M mMS(mMS) mMS(4GeV) mMS(2GeV) ⇤MS[MeV]

0 [36] 6.76(9) 4.35(5) 4.39(6) 4.87(8) 238(19) [69]
2 this work 6.58(17) 4.21(11) 4.25(12) 4.88(15) 310(20) [55]
5 PDG13 [1] 7.50(8) 4.18(3) 4.22(4) 4.91(5) 212(8) [1]

Table 4: Masses of the b-quark in GeV in theories with different quark flavour numbers Nf and
for different schemes/scales as well as ⇤MS and the RGI mass M . The PDG value of the b-quark
mass is dominated by [8,24].

With a less detailed look, the overall picture of the MS masses in table 4 suggests that –
at the present level of errors – the b-quark mass is correctly determined from the different
approaches. Our method is very different from those which enter the PDG average. It
avoids perturbative errors in all stages of the computation except for the connection of the
RGI mass to the running mass in the MS scheme, where truncation errors seem to be very
small. Due to these properties, it remains of interest to apply our method with at least
three light dynamical quarks and test the consistency of the table once more. As remarked
earlier, the error budget of our present computation is such that in a future computation
a significantly more precise number can be expected.

A Error propagation and conversion to m(m)

Here we give details on the conversion function ⇢(r) that has been used in (3.12). It
connects the RGI quark mass M to the quark mass m⇤ defined by m(m⇤) = m⇤ and
usually denoted by m(m). We closely follow the standard steps which have been outlined
in our notation in [70]. In a given scheme our conventions for the RG invariants read

⇤

µ
= [b0ḡ

2(µ)]
� b1

2b20 e
� 1

2b0ḡ
2(µ) exp

⇢
�
Z

ḡ(µ)

0
dg


1

�(g)
+

1

b0g3
� b1

b20g

��
⌘ '

g

(ḡ) ,

(A.1)

M

m(µ)
= [2b0ḡ

2(µ)]
� d0

2b0 exp

⇢
�
Z

ḡ(µ)

0
dg


⌧(g)

�(g)
� d0

b0g

��
⌘ '

m

(ḡ) , (A.2)

with universal coefficients b0 = (11 � 2Nf/3)(4⇡)�2, b1 = (102 � 38Nf/3)(4⇡)�4 and
d0 = 8(4⇡)�2, c.f. [65]. From their ratio one obtains a relation

r ⌘ M

⇤
=

m(µ)

µ
⇥ '

m

(ḡ(µ))

'
g

(ḡ(µ))
(A.3)

that for fixed m(µ)/µ allows us to parameterize the renormalized coupling ḡ2(µ) through
r. Choosing µ = m⇤ with ḡ(m⇤) = g⇤ in eq. (A.2) then leads to the functional dependence

m⇤ = M · ⇢(r) , with ⇢(r) = 1/'
m

(g⇤) . (A.4)

We evaluate this function at 4-loop order in the MS scheme for Nf = 2 flavours and obtain
to a very good approximation ⇢(r) = 0.6400� 0.0043 · (r � 21) close to r = 21.

Let us now turn to the propagation of errors from the non-perturbative quark mass
renormalization and coupling renormalization to m(m). To incorporate correlations among

10
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Table 2
Raw data of mB,δ(z,mπ ,a) in MeV for all ensembles (id), z and HYP actions considered in this work. In the last row we report B(z) ≡ msub

B,δ (z,mexp
π ,0) for the z that were

used in the quadratic interpolation to fix zb using Eq. (3.9).

id y z = 11 z = 13 z = 15

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 4434(62) 4454(62) 5024(70) 5042(70) 5597(78) 5613(78)
A5 0.0624(13) 4419(62) 4440(62) 5010(70) 5028(70) 5583(78) 5600(78)
B6 0.0484(9) 4398(62) 4420(62) 4988(70) 5008(70) 5562(78) 5579(78)
E5 0.0926(15) 4474(59) 4492(59) 5069(66) 5084(66) 5646(73) 5661(73)
F6 0.0562(9) 4436(59) 4452(58) 5031(66) 5046(66) 5609(73) 5622(73)
F7 0.0449(7) 4431(58) 4444(58) 5026(65) 5037(65) 5603(73) 5613(73)
G8 0.0260(5) 4415(59) 4434(59) 5010(66) 5027(66) 5589(73) 5603(73)
N5 0.0940(24) 4586(57) 4594(57) 5193(64) 5200(63) 5783(71) 5789(70)
N6 0.0662(10) 4563(57) 4568(56) 5169(63) 5174(63) 5759(70) 5763(70)
O7 0.0447(7) 4539(56) 4555(56) 5147(63) 5161(63) 5737(69) 5750(70)

B(z) 4610(57) 5207(63) 5787(69)

Fig. 2. (Left) Chiral and continuum extrapolation of msub
B,δ (z, y,a) for the z used in the determination of zb. Open/filled symbols refer to HYP1/HYP2 data points as do

long/short dashed curves, respectively. (Right) Interpolation to zb by imposing Eq. (3.9).

(right) the corresponding dependence of mB on z at the physical
point is nearly linear, indicating that the HQET expansion is precise
for this observable. Nevertheless, we perform a quadratic interpo-
lation of mB(z,mexp

π ,0) and fix zb by imposing the experimental
value for the B-meson mass,

mB
(
z,mexp

π ,0
)∣∣

z=zb
≡ mexp

B . (3.9)

We take mexp
B = 5.2795 GeV [1] and obtain

zb = 13.25(22)(13)z, (3.10)

where the first error is statistical and in particular contains the
error from the combined chiral and continuum extrapolation,
whereas the second error is the uncertainty of h(L0) defined in
(A.6). It is due to the non-perturbative quark mass renormalization
in QCD [38]. To give the RGI b-quark mass in physical units we
combine (3.10) and (3.2) to solve the relation zb = L1Mb for Mb.
According to Mb = zb/[L1 fK] · fK we finally obtain our main result2

Mb = 6.58(17) GeV. (3.11)

Since in the literature it is more common to compare masses in
the MS scheme, we convert our result (3.11) and give its value
mMS

b at the scale µ = mMS
b as well as at µ = 2 GeV. We use

mMS
b

(
mMS

b

)
= Mb · ρ(Mb/ΛMS), (3.12)

2 We follow the notation of Gasser and Leutwyler [62] for the definition of the
RGI mass, M = limµ→∞(2b0 ḡ2(µ))−d0/(2b0)m(µ), where b0 = (11 − 2Nf/3)(4π)−2

and d0 = 8(4π)−2.

with a conversion function ρ(r) that can be evaluated accurately
using the known 4-loop anomalous dimensions of quark masses
and coupling [63,64]. It is described in more detail in Appendix A.
The ratio rb = Mb/ΛMS is computed from our value of zb and
the ALPHA Collaboration results for non-perturbative quark mass
renormalization [65]. We find rb = 21.1(13), ρ(rb) = 0.640(6) and

mMS
b (2 GeV) = 4.88(15) GeV,

mMS
b

(
mMS

b

)
= 4.21(11) GeV. (3.13)

We emphasize that this is the mass in the theory with two dy-
namical quark-flavours, the b-quark is quenched, a completely well
defined approximation for a heavy quark. In particular also the
function ρ(r) refers to Nf = 2.

To have an idea of the magnitude of O(1/mb) corrections to the
b-quark mass one must repeat the above computation in the static
limit. The reason is that the 1/m contribution ωkin Ekin +ωspin Espin

is divergent in the continuum limit; only the combination with
mbare in Eq. (2.10) is finite. The HQET parameter mstat

bare was de-
termined by matching the static theory with QCD as described
in [38]. By repeating the same steps as for the NLO case we ob-
tain

zstat
b = 13.24(21)(13)z, Mstat

b = 6.57(17) GeV, (3.14)

which after conversion to the MS scheme gives
[
mMS

b

(
mMS

b

)]stat = 4.21(11) GeV. (3.15)

The result of the combined chiral and continuum extrapolation
of mB in the static limit, as well as the quadratic interpolation

z=M L1
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Table 1
Details of the CLS ensembles used: bare coupling β = 6/g2

0 , lattice spacing a, spatial extent L in lattice units (T = 2L), pion mass mπ , mπ L, number of configurations
employed, and number of configurations employed normalized in units of the exponential autocorrelation time τexp as estimated in [52]. Additionally, we specify the CLS
label id and the Gaussian smearing parameters Rk used to build different interpolating fields as described in the text.

β a [fm] L/a mπ [MeV] mπ L #cfgs #cfgs
τexp

id {R1, R2, R3}
5.2 0.075 32 380 4.7 1012 122 A4 {15,60,155}

32 330 4.0 1001 164 A5
48 280 5.2 636 52 B6

5.3 0.065 32 440 4.7 1000 120 E5 {22,90,225}
48 310 5.0 500 30 F6
48 270 4.3 602 36 F7
64 190 4.1 410 17 G8

5.5 0.048 48 440 5.2 477 4.2 N5 {33,135,338}
48 340 4.0 950 38 N6
64 270 4.2 980 20 O7

Fig. 1. Illustration of typical plateaux for the ground state static energy (left panel) and the O(1/mb) chromomagnetic energy (right); the CLS ensemble shown here is N6
(a = 0.048 fm, mπ = 340 MeV).

that is needed to convert the b-quark mass into physical units
later on. The length scale L1 originates from the non-perturbative
finite-volume matching step used to determine the HQET parame-
ters [38].

3.3. Basis of B-meson interpolating fields

Our basis of N = 3 operators is given by

O k(x) = ψh(x)γ0γ5ψ
(k)
l (x), k = 1, . . . , N, (3.3)

where ψh(x) is the static quark field, and different levels of Gaus-
sian smearing [56] with a triply (spatially) APE smeared [57,58]
covariant Laplacian & are applied to the relativistic quark field

ψ
(k)
l (x) =

(
1 + κGa2&

)Rkψl(x). (3.4)

Our smearing parameters κG = 0.1 and Rk , collected in Table 1, are
chosen so as to use approximately the same sequence of physical
radii rk = 2a

√
κG Rk at each value of the lattice spacing. In extract-

ing our estimates for the energies Estat,kin,spin
1 from the GEVP, the

time intervals [tmin, tmax] over which we fit the plateaux are cho-
sen so as

r(tmin) = |A(tmin) − A(tmin − δ)|
√

σ 2(tmin) + σ 2(tmin − δ)
! 3, (3.5)

where A is the plateau average, σ is the statistical error, δ =
2/(Estat

N+1 − Estat
1 ) ∼ 0.3 fm, and tmax is fixed to ∼ 0.9 fm. This

will assure that our selection criterion σsys ! σ /3 is satisfied [59],
where σsys ∝ exp[−(E N+1 − E1)tmin]. An illustration of two typical
plateaux of Estat

1 and Espin
1 is shown in Fig. 1.

3.4. Determination of the b-quark mass

The mass of the B-meson to static order is given by

mstat
B = mstat

bare + Estat (3.6)

while the main formula at O(1/mb) was given in Eq. (2.10). The
HQET parameters mstat

bare, mbare, ωkin and ωspin depend on the renor-
malization group invariant (RGI) heavy quark mass M (defined
below) and the lattice spacing a. We parameterize this depen-
dence by the dimensionless variable z = ML1 and a, where L1 is
kept fixed. It is implicitly defined by the renormalized coupling in
the Schrödinger Functional (SF) scheme via ḡ2(L1/2) = 2.989 [38].
Apart from a, the large-volume observables Ex depend on the light
quark mass which we parameterize through mπ . Thus mB,δ , com-
puted with discretization HYP1 for δ = 1 and HYP2 for δ = 2, are
functions of z, mπ and a. Their values are listed in Table 2.

Once mB,δ have been computed for a set of z spanning
a range of heavy quark masses containing the b-quark mass, we
perform a combined chiral and continuum extrapolation to ob-
tain mB(z,mexp

π ) ≡ mB,δ(z,mexp
π ,0), using mexp

π = 134.98 MeV [1].
Considering that the O(a) improvement was performed non-
perturbatively but neglecting O(a/mb) effects,1 the NLO formula
from HMChPT reads [60]

msub
B,δ (z, y,a) = B(z) + C

(
y − yexp)

+ Dδa2, y ≡ m2
π

8π2 f 2
π

, (3.7)

where in

msub
B,δ (z, y,a) ≡ mB,δ(z,mπ ,a) + 3ĝ2

16π

(
m3

π

f 2
π

− (mexp
π )3

( f exp
π )2

)
(3.8)

the leading non-analytic term of HMChPT has been subtracted. The
B∗Bπ coupling ĝ = 0.489(32) has been determined recently [61]
and the variable y is identical to ỹ1 introduced in [55]. We use the
convention where the pion decay constant is f exp

π = 130.4 MeV.
The extrapolation (3.7) is shown in Fig. 2 (left) for three values
of z in the vicinity of zb = MbL1 we are aiming at. Its result,
B(z) = mB,δ(z,mexp

π ,0), is given in Table 2. As shown in Fig. 2

1 Accounting for an a/mb has little effect. Adding a term Fδ · (a/mb) to Eq. (3.7)
does not change the unnormalized χ2. For instance, the fitting parameter B(z)|z=13
changes to 5227(79) MeV and Eq. (3.10) would read zb = 13.18(27)(13).
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Table 2
Raw data of mB,δ(z,mπ ,a) in MeV for all ensembles (id), z and HYP actions considered in this work. In the last row we report B(z) ≡ msub

B,δ (z,mexp
π ,0) for the z that were

used in the quadratic interpolation to fix zb using Eq. (3.9).

id y z = 11 z = 13 z = 15

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 4434(62) 4454(62) 5024(70) 5042(70) 5597(78) 5613(78)
A5 0.0624(13) 4419(62) 4440(62) 5010(70) 5028(70) 5583(78) 5600(78)
B6 0.0484(9) 4398(62) 4420(62) 4988(70) 5008(70) 5562(78) 5579(78)
E5 0.0926(15) 4474(59) 4492(59) 5069(66) 5084(66) 5646(73) 5661(73)
F6 0.0562(9) 4436(59) 4452(58) 5031(66) 5046(66) 5609(73) 5622(73)
F7 0.0449(7) 4431(58) 4444(58) 5026(65) 5037(65) 5603(73) 5613(73)
G8 0.0260(5) 4415(59) 4434(59) 5010(66) 5027(66) 5589(73) 5603(73)
N5 0.0940(24) 4586(57) 4594(57) 5193(64) 5200(63) 5783(71) 5789(70)
N6 0.0662(10) 4563(57) 4568(56) 5169(63) 5174(63) 5759(70) 5763(70)
O7 0.0447(7) 4539(56) 4555(56) 5147(63) 5161(63) 5737(69) 5750(70)

B(z) 4610(57) 5207(63) 5787(69)

Fig. 2. (Left) Chiral and continuum extrapolation of msub
B,δ (z, y,a) for the z used in the determination of zb. Open/filled symbols refer to HYP1/HYP2 data points as do

long/short dashed curves, respectively. (Right) Interpolation to zb by imposing Eq. (3.9).

(right) the corresponding dependence of mB on z at the physical
point is nearly linear, indicating that the HQET expansion is precise
for this observable. Nevertheless, we perform a quadratic interpo-
lation of mB(z,mexp

π ,0) and fix zb by imposing the experimental
value for the B-meson mass,

mB
(
z,mexp

π ,0
)∣∣

z=zb
≡ mexp

B . (3.9)

We take mexp
B = 5.2795 GeV [1] and obtain

zb = 13.25(22)(13)z, (3.10)

where the first error is statistical and in particular contains the
error from the combined chiral and continuum extrapolation,
whereas the second error is the uncertainty of h(L0) defined in
(A.6). It is due to the non-perturbative quark mass renormalization
in QCD [38]. To give the RGI b-quark mass in physical units we
combine (3.10) and (3.2) to solve the relation zb = L1Mb for Mb.
According to Mb = zb/[L1 fK] · fK we finally obtain our main result2

Mb = 6.58(17) GeV. (3.11)

Since in the literature it is more common to compare masses in
the MS scheme, we convert our result (3.11) and give its value
mMS

b at the scale µ = mMS
b as well as at µ = 2 GeV. We use

mMS
b

(
mMS

b

)
= Mb · ρ(Mb/ΛMS), (3.12)

2 We follow the notation of Gasser and Leutwyler [62] for the definition of the
RGI mass, M = limµ→∞(2b0 ḡ2(µ))−d0/(2b0)m(µ), where b0 = (11 − 2Nf/3)(4π)−2

and d0 = 8(4π)−2.

with a conversion function ρ(r) that can be evaluated accurately
using the known 4-loop anomalous dimensions of quark masses
and coupling [63,64]. It is described in more detail in Appendix A.
The ratio rb = Mb/ΛMS is computed from our value of zb and
the ALPHA Collaboration results for non-perturbative quark mass
renormalization [65]. We find rb = 21.1(13), ρ(rb) = 0.640(6) and

mMS
b (2 GeV) = 4.88(15) GeV,

mMS
b

(
mMS

b

)
= 4.21(11) GeV. (3.13)

We emphasize that this is the mass in the theory with two dy-
namical quark-flavours, the b-quark is quenched, a completely well
defined approximation for a heavy quark. In particular also the
function ρ(r) refers to Nf = 2.

To have an idea of the magnitude of O(1/mb) corrections to the
b-quark mass one must repeat the above computation in the static
limit. The reason is that the 1/m contribution ωkin Ekin +ωspin Espin

is divergent in the continuum limit; only the combination with
mbare in Eq. (2.10) is finite. The HQET parameter mstat

bare was de-
termined by matching the static theory with QCD as described
in [38]. By repeating the same steps as for the NLO case we ob-
tain

zstat
b = 13.24(21)(13)z, Mstat

b = 6.57(17) GeV, (3.14)

which after conversion to the MS scheme gives
[
mMS

b

(
mMS

b

)]stat = 4.21(11) GeV. (3.15)

The result of the combined chiral and continuum extrapolation
of mB in the static limit, as well as the quadratic interpolation

z=M L1

ALPHA Collaboration / Physics Letters B 730 (2014) 171–177 175

Table 3
Partial contributions (σi/σ )2 to the accumulated error σ of zb. Only error sources
contributing with a relative squared uncertainty (σi/σ )2 > 0.5% are listed. The en-
semble A3 did not appear in Table 1 since it enters through the scale setting
procedure [54,55] only.

Source i A3 G8 N5 N6 O7 ZA ωHQET

(σi/σ )2 [%] 1.2 0.9 2.6 5.9 5.6 20.6 61.6

in z to obtain zstat
b are very similar to those obtained at next-to-

leading order. The small differences observed between the results
in (3.10)–(3.11) and (3.14) show that for this observable the HQET
expansion is very precise, making us confident that O(1/m2

b) cor-
rections are negligible with present accuracy. Indeed, the smallness
of the 1/mb terms is known with much higher accuracy than (3.10)
suggests, e.g., z(1/m)

b ≡ zb − zstat
b = −0.008(51).

We conclude this section by analyzing the error budget for zb.
As can be seen in Table 3 approximately 62% of the contribu-
tion to the square of the error comes from the HQET parameters.
Another ∼ 21% comes from the relativistic ZA that affects the com-
putation of zb through the scale setting, while only the residual
∼ 17% comes from the computation of the HQET matrix elements.
In this respect the largest contribution comes from the ensembles
at β = 5.5, that are more affected by long-term autocorrelations
(critical slowing down).

4. Discussion and conclusions

Using non-perturbatively matched and renormalized HQET in
Nf = 2 lattice QCD, we have determined the mass of the b-quark
with essentially controlled systematic errors: in particular, the
renormalization is carried out without recourse to perturbation
theory and the continuum limit is taken. An irreducible systematic
error which remains is a $mb/mb ∼ (Λ/mb)

3 relative error due to
the truncation of the HQET expansion at order Λ2/mb. However,
with a typical scale of Λ = 500 MeV one obtains a permille-sized
truncation error, which is completely negligible with today’s ac-
curacy. The estimate is supported by the fact that we do not see
any difference between our static result and the one including the
Λ2/mb terms. Furthermore, according to previous experience an
effective scale of around Λ = 500 MeV seems to govern the ex-
pansion [38,59,66].

Our results,

Mb|Nf=2 = 6.58(17) GeV, (4.1)

mMS
b (2 GeV)|Nf=2 = 4.88(15) GeV, (4.2)

are in agreement with the Nf = 2 results of [28] who cite a similar
error, but use a completely different approach. We compare to the
quenched approximation and to the PDG values in Table 4. There
is little dependence of mMS

b (µ) on the number of flavours for Nf =
0,2,5 and for typical values of µ between mMS

b itself and 2 GeV.
In particular at the lower scale of 2 GeV, where the apparent

convergence of perturbation theory is still quite good, a flavour
number dependence of the mass of the b-quark is not detectable
at all. In hindsight, this is rather plausible as we match our ef-
fective theories (albeit with only Nf = 0,2 dynamical flavours) to
the real world data at low energies. Indeed, precisely speaking the
above statements refer to the theories renormalized by fixing the
B-meson mass to its physical value and setting the overall energy
scale through the kaon decay constant [55] or roughly equivalent
the pion decay constant [54].3 In this way the low energy hadron

3 For Nf = 0 we used the scale r0 ≈ 0.5 fm instead of the decay constants, but
in [55] this value of r0 was obtained for the Nf = 2 theory.

sector of the theories is matched to experiment, and it is natural
to expect that the quark masses agree at a relatively low scale. On
the other hand we do not want to push the perturbation theory
needed for giving mb in the MS scheme to scales below 2 GeV. We
remark that also the strange quark mass at 2 GeV is known to be
only weakly dependent on Nf [67,68].

In contrast, the RGI mass Mb differs significantly between
Nf = 5 and Nf = 2. Given the observed weak flavour number de-
pendence at scales of 2–5 GeV, the differences in Mb can be traced
back to the Nf dependence of both the RG functions and the Λ
parameters. These two effects happen to reinforce each other be-
tween Nf = 5 and Nf = 2 while in the comparison Nf = 2 and
Nf = 0 they partially compensate.

All of this suggests to use the b-quark mass at scales around
µ = 2 GeV when one attempts to make predictions from theories
with a smaller number of flavours for the physical 5-flavour theory.

With a less detailed look, the overall picture of the MS masses
in Table 4 suggests that – at the present level of errors – the
b-quark mass is correctly determined from the different ap-
proaches. Our method is very different from those which enter
the PDG average. It avoids perturbative errors in all stages of the
computation except for the connection of the RGI mass to the run-
ning mass in the MS scheme, where truncation errors seem to be
very small. Due to these properties, it remains of interest to ap-
ply our method with at least three light dynamical quarks and test
the consistency of the table once more. As remarked earlier, the
error budget of our present computation is such that in a future
computation a significantly more precise number can be expected.
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Appendix A. Error propagation and conversion to m(m)

Here we give details on the conversion function ρ(r) that has
been used in (3.12). It connects the RGI quark mass M to the quark
mass m∗ defined by m(m∗) = m∗ and usually denoted by m(m). We
closely follow the standard steps which have been outlined in our
notation in [70]. In a given scheme our conventions for the RG
invariants read



Results: 1. A Summary of published results
- determine decay constants, Nf=2 

354 ALPHA Collaboration / Physics Letters B 735 (2014) 349–356

Fig. 3. Extrapolation of the B (left panel) and Bs (right panel) meson decay constant to the physical point. On the left, the extrapolation using HMχPT at NLO (filled triangle) 
is compared to a linear one (open triangle), in order to extract the systematic error from truncating HMχPT at NLO. For fBs only a LO formula is known and shown. As a 
comparison we also add our final result, the continuum value of fBs = [ fBs / fB] fB. All data points are listed in Table 2.

The first, statistical, error as obtained from the NLO HMχPT fit 
ansatz also includes the discrepancy to the static result, the un-
certainty from the HQET parameters and the lattice spacings. We 
add a second, systematic, error to account for the uncertainty in 
the chiral extrapolation. It is given by the difference between the 
quoted value and its counterpart obtained by employing the LO fit 
ansatz for the chiral extrapolation. While we show only the NLO 
extrapolation of fB in the left panel of Fig. 3, we also add the 
continuum extrapolated value from the LO fit ansatz. With all cor-
relations taken into account, our estimate for the Bs-meson decay 
constant becomes

fBs = 224(14)(2)χ MeV. (3.3)

In the right panel of Fig. 3, we contrast this result (filled trian-
gle) with an extrapolation of our fBs lattice data as if treated as an 
independent observable, cf. Table 2. We have also tried a contin-
uum extrapolation keeping a term linear in a in the fit functions. 
In fact, we have not included O(a) improvement terms in the HQET 
action and current insertions at O(1/mh). These effects, formally of 
O(a/mh), are expected to be small, and within our error we do not 
observe any such dependence.

To get an insight on the convergence in 1/mh, it is interesting 
to compare our estimates at subleading order with those at static 
order of HQET. By applying the same fit formulae as in Eqs. (3.1), 
we obtain

f stat
B = 190(5)(2)χ MeV,

f stat
Bs

f stat
B

= 1.189(24)(30)χ ,

f stat
Bs

= 226(6)(9)χ MeV. (3.4)

In Table 5 we split the statistical error of our observables among 
different sources. Obviously, the errors from the HQET parame-
ters ω and renormalization factor ZA which enters through the 
scale setting, largely cancel in the ratio. Although one looses preci-
sion, in general, due to the increased variance in HQET observables 
compared to observables in the light quark sector (such as mπ

or fπ ), one is in the fortunate position that the former couple less 
to the slow modes of the Monte Carlo chain, and therefore their 
integrated autocorrelation times are smaller than for “light” quan-
tities.

3.1. A quick look at phenomenology

The Flavour Lattice Averaging Group (FLAG) [49] has made a 
selection of lattice results for fB, fBs and fBs/ fB with Nf = 2, 

Table 5
Distribution of relative squared errors among different sources for (3.2)–(3.4).

Source fBs fB fBs / fB f stat
Bs

f stat
B f stat

Bs
/ f stat

B

A3 0.20% 0.19% 0.00% 1.22% 1.10% 0.00%
A4 5.94% 9.36% 14.27% 8.06% 2.76% 14.36%
A5 1.17% 6.51% 7.37% 2.01% 0.91% 3.10%
B6 3.32% 2.99% 0.00% 2.70% 1.44% 0.26%
E5 1.15% 1.28% 0.21% 1.00% 0.95% 0.01%
F6 1.70% 2.21% 6.44% 1.85% 2.62% 9.65%
F7 15.41% 5.79% 37.01% 14.89% 3.02% 40.32%
G8 13.96% 12.81% 0.00% 15.36% 13.26% 0.00%
N5 5.91% 5.43% 0.00% 9.17% 7.94% 0.00%
N6 19.42% 13.78% 29.87% 8.35% 24.10% 28.61%
O7 16.03% 25.46% 4.80% 19.91% 27.66% 3.58%
ω 14.02% 12.72% 0.01% 8.35% 7.21% 0.00%
ZA 1.77% 1.46% 0.01% 7.13% 7.04% 0.09%

2 + 1 and 2 + 1 + 1 dynamical quarks [17–22]. Only one de-
termination entered the two-flavour average and has been up-
dated [18] since. Their values fB = 189(8) MeV, fBs = 228(8) and 
fBs/ fB = 1.206(24) are fully compatible with ours. Averaging both 
Nf = 2 results produces numbers which are consistent with the es-
timate from Nf = 2 + 1 computations quoted by FLAG: f Nf=2+1

B =
190.5(4.2) MeV, f Nf=2+1

B = 227.7(4.5) and fBs/ fB = 1.202(22).
As a phenomenological application, we can insert our results 

for fB and fBs into the formulae describing the branching ratios of 
B → τντ and Bs → µ+µ− transitions:

B
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(
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τ
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mBsm2
µ

√√√√1 −
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m2
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∣∣V ∗
tb V ts

∣∣2
Y 2.

(3.5)

Here Y ≡ Y (xtW, xHt, αs) takes into account various electroweak 
and QCD corrections, parameterized by xtW = m2

t /m2
W and xHt =

M2
H/m2

t with MH being the Higgs boson mass. Using as inputs the 
experimental value B(B → τντ )exp = 1.05(25) × 10−4 quoted by 
the PDG [2,48,50–52] and our estimate of fB, we get

|V ub| = 4.15(29) fB(48)B × 10−3, (3.6)
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Fig. 3. Extrapolation of the B (left panel) and Bs (right panel) meson decay constant to the physical point. On the left, the extrapolation using HMχPT at NLO (filled triangle) 
is compared to a linear one (open triangle), in order to extract the systematic error from truncating HMχPT at NLO. For fBs only a LO formula is known and shown. As a 
comparison we also add our final result, the continuum value of fBs = [ fBs / fB] fB. All data points are listed in Table 2.
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ansatz for the chiral extrapolation. While we show only the NLO 
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continuum extrapolated value from the LO fit ansatz. With all cor-
relations taken into account, our estimate for the Bs-meson decay 
constant becomes

fBs = 224(14)(2)χ MeV. (3.3)

In the right panel of Fig. 3, we contrast this result (filled trian-
gle) with an extrapolation of our fBs lattice data as if treated as an 
independent observable, cf. Table 2. We have also tried a contin-
uum extrapolation keeping a term linear in a in the fit functions. 
In fact, we have not included O(a) improvement terms in the HQET 
action and current insertions at O(1/mh). These effects, formally of 
O(a/mh), are expected to be small, and within our error we do not 
observe any such dependence.
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we obtain
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= 226(6)(9)χ MeV. (3.4)

In Table 5 we split the statistical error of our observables among 
different sources. Obviously, the errors from the HQET parame-
ters ω and renormalization factor ZA which enters through the 
scale setting, largely cancel in the ratio. Although one looses preci-
sion, in general, due to the increased variance in HQET observables 
compared to observables in the light quark sector (such as mπ

or fπ ), one is in the fortunate position that the former couple less 
to the slow modes of the Monte Carlo chain, and therefore their 
integrated autocorrelation times are smaller than for “light” quan-
tities.

3.1. A quick look at phenomenology

The Flavour Lattice Averaging Group (FLAG) [49] has made a 
selection of lattice results for fB, fBs and fBs/ fB with Nf = 2, 
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Source fBs fB fBs / fB f stat
Bs

f stat
B f stat

Bs
/ f stat

B

A3 0.20% 0.19% 0.00% 1.22% 1.10% 0.00%
A4 5.94% 9.36% 14.27% 8.06% 2.76% 14.36%
A5 1.17% 6.51% 7.37% 2.01% 0.91% 3.10%
B6 3.32% 2.99% 0.00% 2.70% 1.44% 0.26%
E5 1.15% 1.28% 0.21% 1.00% 0.95% 0.01%
F6 1.70% 2.21% 6.44% 1.85% 2.62% 9.65%
F7 15.41% 5.79% 37.01% 14.89% 3.02% 40.32%
G8 13.96% 12.81% 0.00% 15.36% 13.26% 0.00%
N5 5.91% 5.43% 0.00% 9.17% 7.94% 0.00%
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ω 14.02% 12.72% 0.01% 8.35% 7.21% 0.00%
ZA 1.77% 1.46% 0.01% 7.13% 7.04% 0.09%

2 + 1 and 2 + 1 + 1 dynamical quarks [17–22]. Only one de-
termination entered the two-flavour average and has been up-
dated [18] since. Their values fB = 189(8) MeV, fBs = 228(8) and 
fBs/ fB = 1.206(24) are fully compatible with ours. Averaging both 
Nf = 2 results produces numbers which are consistent with the es-
timate from Nf = 2 + 1 computations quoted by FLAG: f Nf=2+1

B =
190.5(4.2) MeV, f Nf=2+1

B = 227.7(4.5) and fBs/ fB = 1.202(22).
As a phenomenological application, we can insert our results 

for fB and fBs into the formulae describing the branching ratios of 
B → τντ and Bs → µ+µ− transitions:
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Here Y ≡ Y (xtW, xHt, αs) takes into account various electroweak 
and QCD corrections, parameterized by xtW = m2

t /m2
W and xHt =

M2
H/m2

t with MH being the Higgs boson mass. Using as inputs the 
experimental value B(B → τντ )exp = 1.05(25) × 10−4 quoted by 
the PDG [2,48,50–52] and our estimate of fB, we get

|V ub| = 4.15(29) fB(48)B × 10−3, (3.6)
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where the errors come from fB and the branching ratio, respec-
tively. The value is roughly 1.5σ above the exclusive determination 
from B → πℓν .

Moreover, using the recent combination of experimental mea-
surements at LHC, namely B(Bs → µ+µ−) = (2.9 ± 0.7) × 10−9 [6,
7,53], together with our determination of fBs , and all input param-
eters of (3.5) set as in [8], we obtain

∣∣V ∗
tb V ts

∣∣ = 3.89(24) fBs
(47)B × 10−2. (3.7)

The number is in good agreement with the extraction from global 
fits, which is mostly constrained by B0

s –B0
s mixing.

4. Conclusions

In this paper we have reported on our lattice measurement of 
the decay constants fB and fBs performed with two dynamical 
flavours of O(a) improved Wilson fermions. The b-quark is treated 
in HQET, with the matching to QCD performed non-perturbatively. 
This makes the computation entirely non-perturbative, with no 
reference to continuum renormalized perturbation theory at any 
point. After an extrapolation to the chiral and continuum limit, we 
obtain

fB = 186(13) MeV, fBs/ fB = 1.203(65),

fBs = 224(14) MeV. (4.1)

Though it is important to check the dependence of these results 
on the number of dynamical flavours, and therefore to repeat the 
computation with a dynamical strange quark, it may still be in-
teresting to compute the ratios fB∗/ fB and fB∗

0
/ fB on the Nf = 2

ensembles. The first one is often used to check the reliability of 
sum rules in the B-sector [54]. A lattice measurement at O(1/mb)
requires the matching coefficients that are being computed by 
the ALPHA Collaboration to extract B → πℓν form factors [55]. 
The second ratio, already in the static limit, can be used to gain 
some insight into the precision of phenomenological applications 
of HMχPT, in particular concerning the relevance of the contribu-
tions from the J P = {0+, 1+} doublet states in chiral loops [56].

The method of the present paper to compute B-meson decay 
constants has been used previously in the framework of quenched 
QCD to estimate fBs without inclusion of virtual quark loops [33]. 
There, the scale r0 defined via the static quark potential [57] was 
employed to express the decay constant in physical units, corre-
sponding to f Nf=0

Bs
= 216(5) MeV for r0 = 0.5 fm and f Nf=0

Bs
=

252(7) MeV for r0 = 0.45 fm. Given the rather reliable evidence 
that the true r0 in physical units lies in between these values 
(see [58] for a review of the current status), our final result in 
Eq. (4.1) is compatible with the quenched one at the present level 
of precision. Hence, no significant Nf-dependence can be stated.

An interesting piece of information is also contained in the 
technical Table 5. It shows that the uncertainties in the non-
perturbatively determined HQET parameters contribute only at the 
level of 8% in the static limit and 14% when 1/mb terms are in-
cluded. Moreover, we find the O(1/mb) corrections to be very 
small, ! 2.5%. This, together with the fact that the computation 
of the ωi can be much improved with today’s machines, gives us 
confidence that errors can be significantly reduced in the future 
computation with 2 + 1 dynamical flavours.
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- tiny NLO (1/M) corrections  

- the same for the quark mass:
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Table 2
Raw data of mB,δ(z,mπ ,a) in MeV for all ensembles (id), z and HYP actions considered in this work. In the last row we report B(z) ≡ msub

B,δ (z,mexp
π ,0) for the z that were

used in the quadratic interpolation to fix zb using Eq. (3.9).

id y z = 11 z = 13 z = 15

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 4434(62) 4454(62) 5024(70) 5042(70) 5597(78) 5613(78)
A5 0.0624(13) 4419(62) 4440(62) 5010(70) 5028(70) 5583(78) 5600(78)
B6 0.0484(9) 4398(62) 4420(62) 4988(70) 5008(70) 5562(78) 5579(78)
E5 0.0926(15) 4474(59) 4492(59) 5069(66) 5084(66) 5646(73) 5661(73)
F6 0.0562(9) 4436(59) 4452(58) 5031(66) 5046(66) 5609(73) 5622(73)
F7 0.0449(7) 4431(58) 4444(58) 5026(65) 5037(65) 5603(73) 5613(73)
G8 0.0260(5) 4415(59) 4434(59) 5010(66) 5027(66) 5589(73) 5603(73)
N5 0.0940(24) 4586(57) 4594(57) 5193(64) 5200(63) 5783(71) 5789(70)
N6 0.0662(10) 4563(57) 4568(56) 5169(63) 5174(63) 5759(70) 5763(70)
O7 0.0447(7) 4539(56) 4555(56) 5147(63) 5161(63) 5737(69) 5750(70)

B(z) 4610(57) 5207(63) 5787(69)

Fig. 2. (Left) Chiral and continuum extrapolation of msub
B,δ (z, y,a) for the z used in the determination of zb. Open/filled symbols refer to HYP1/HYP2 data points as do

long/short dashed curves, respectively. (Right) Interpolation to zb by imposing Eq. (3.9).

(right) the corresponding dependence of mB on z at the physical
point is nearly linear, indicating that the HQET expansion is precise
for this observable. Nevertheless, we perform a quadratic interpo-
lation of mB(z,mexp

π ,0) and fix zb by imposing the experimental
value for the B-meson mass,

mB
(
z,mexp

π ,0
)∣∣

z=zb
≡ mexp

B . (3.9)

We take mexp
B = 5.2795 GeV [1] and obtain

zb = 13.25(22)(13)z, (3.10)

where the first error is statistical and in particular contains the
error from the combined chiral and continuum extrapolation,
whereas the second error is the uncertainty of h(L0) defined in
(A.6). It is due to the non-perturbative quark mass renormalization
in QCD [38]. To give the RGI b-quark mass in physical units we
combine (3.10) and (3.2) to solve the relation zb = L1Mb for Mb.
According to Mb = zb/[L1 fK] · fK we finally obtain our main result2

Mb = 6.58(17) GeV. (3.11)

Since in the literature it is more common to compare masses in
the MS scheme, we convert our result (3.11) and give its value
mMS

b at the scale µ = mMS
b as well as at µ = 2 GeV. We use

mMS
b

(
mMS

b

)
= Mb · ρ(Mb/ΛMS), (3.12)

2 We follow the notation of Gasser and Leutwyler [62] for the definition of the
RGI mass, M = limµ→∞(2b0 ḡ2(µ))−d0/(2b0)m(µ), where b0 = (11 − 2Nf/3)(4π)−2

and d0 = 8(4π)−2.

with a conversion function ρ(r) that can be evaluated accurately
using the known 4-loop anomalous dimensions of quark masses
and coupling [63,64]. It is described in more detail in Appendix A.
The ratio rb = Mb/ΛMS is computed from our value of zb and
the ALPHA Collaboration results for non-perturbative quark mass
renormalization [65]. We find rb = 21.1(13), ρ(rb) = 0.640(6) and

mMS
b (2 GeV) = 4.88(15) GeV,

mMS
b

(
mMS

b

)
= 4.21(11) GeV. (3.13)

We emphasize that this is the mass in the theory with two dy-
namical quark-flavours, the b-quark is quenched, a completely well
defined approximation for a heavy quark. In particular also the
function ρ(r) refers to Nf = 2.

To have an idea of the magnitude of O(1/mb) corrections to the
b-quark mass one must repeat the above computation in the static
limit. The reason is that the 1/m contribution ωkin Ekin +ωspin Espin

is divergent in the continuum limit; only the combination with
mbare in Eq. (2.10) is finite. The HQET parameter mstat

bare was de-
termined by matching the static theory with QCD as described
in [38]. By repeating the same steps as for the NLO case we ob-
tain

zstat
b = 13.24(21)(13)z, Mstat

b = 6.57(17) GeV, (3.14)

which after conversion to the MS scheme gives
[
mMS

b

(
mMS

b

)]stat = 4.21(11) GeV. (3.15)

The result of the combined chiral and continuum extrapolation
of mB in the static limit, as well as the quadratic interpolation
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Table 2
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G8 0.0260(5) 4415(59) 4434(59) 5010(66) 5027(66) 5589(73) 5603(73)
N5 0.0940(24) 4586(57) 4594(57) 5193(64) 5200(63) 5783(71) 5789(70)
N6 0.0662(10) 4563(57) 4568(56) 5169(63) 5174(63) 5759(70) 5763(70)
O7 0.0447(7) 4539(56) 4555(56) 5147(63) 5161(63) 5737(69) 5750(70)

B(z) 4610(57) 5207(63) 5787(69)

Fig. 2. (Left) Chiral and continuum extrapolation of msub
B,δ (z, y,a) for the z used in the determination of zb. Open/filled symbols refer to HYP1/HYP2 data points as do

long/short dashed curves, respectively. (Right) Interpolation to zb by imposing Eq. (3.9).

(right) the corresponding dependence of mB on z at the physical
point is nearly linear, indicating that the HQET expansion is precise
for this observable. Nevertheless, we perform a quadratic interpo-
lation of mB(z,mexp

π ,0) and fix zb by imposing the experimental
value for the B-meson mass,

mB
(
z,mexp

π ,0
)∣∣

z=zb
≡ mexp

B . (3.9)

We take mexp
B = 5.2795 GeV [1] and obtain

zb = 13.25(22)(13)z, (3.10)

where the first error is statistical and in particular contains the
error from the combined chiral and continuum extrapolation,
whereas the second error is the uncertainty of h(L0) defined in
(A.6). It is due to the non-perturbative quark mass renormalization
in QCD [38]. To give the RGI b-quark mass in physical units we
combine (3.10) and (3.2) to solve the relation zb = L1Mb for Mb.
According to Mb = zb/[L1 fK] · fK we finally obtain our main result2

Mb = 6.58(17) GeV. (3.11)

Since in the literature it is more common to compare masses in
the MS scheme, we convert our result (3.11) and give its value
mMS

b at the scale µ = mMS
b as well as at µ = 2 GeV. We use

mMS
b

(
mMS

b

)
= Mb · ρ(Mb/ΛMS), (3.12)

2 We follow the notation of Gasser and Leutwyler [62] for the definition of the
RGI mass, M = limµ→∞(2b0 ḡ2(µ))−d0/(2b0)m(µ), where b0 = (11 − 2Nf/3)(4π)−2

and d0 = 8(4π)−2.

with a conversion function ρ(r) that can be evaluated accurately
using the known 4-loop anomalous dimensions of quark masses
and coupling [63,64]. It is described in more detail in Appendix A.
The ratio rb = Mb/ΛMS is computed from our value of zb and
the ALPHA Collaboration results for non-perturbative quark mass
renormalization [65]. We find rb = 21.1(13), ρ(rb) = 0.640(6) and

mMS
b (2 GeV) = 4.88(15) GeV,

mMS
b

(
mMS

b

)
= 4.21(11) GeV. (3.13)

We emphasize that this is the mass in the theory with two dy-
namical quark-flavours, the b-quark is quenched, a completely well
defined approximation for a heavy quark. In particular also the
function ρ(r) refers to Nf = 2.

To have an idea of the magnitude of O(1/mb) corrections to the
b-quark mass one must repeat the above computation in the static
limit. The reason is that the 1/m contribution ωkin Ekin +ωspin Espin

is divergent in the continuum limit; only the combination with
mbare in Eq. (2.10) is finite. The HQET parameter mstat

bare was de-
termined by matching the static theory with QCD as described
in [38]. By repeating the same steps as for the NLO case we ob-
tain

zstat
b = 13.24(21)(13)z, Mstat

b = 6.57(17) GeV, (3.14)

which after conversion to the MS scheme gives
[
mMS

b

(
mMS

b

)]stat = 4.21(11) GeV. (3.15)

The result of the combined chiral and continuum extrapolation
of mB in the static limit, as well as the quadratic interpolation- there are other indications that HQET is an excellent  

(asymptotic) expansion for b-quarks at appropriate kinematics 



There are more and interesting applications to come 
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puzzle 

Motivation

Determination of |Vub|
⇠ 3s discrepancy [PDG] :

Inclusive B! Xu`n :
Vub = (4.41±0.15+0.15

�0.17)⇥10�3

Exclusive B! p`n : Vub = (3.23±0.31)⇥10�3

from B! tn via fB: Vub = (5.10±0.47)⇥10�3

theoretical and experimental input needed
This talk: Non-perturbative determination of form
factors for Bs ! K`n decay
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Motivation

Determination of |Vub|
⇠ 3s discrepancy [PDG] :

Inclusive B! Xu`n :
Vub = (4.41±0.15+0.15

�0.17)⇥10�3

Exclusive B! p`n : Vub = (3.28±0.29)⇥10�3

from B! tn via fB: Vub = (4.22±0.42)⇥10�3

theoretical and experimental input needed
This talk: Non-perturbative determination of form
factors for Bs ! K`n decay

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 2

Based on a lot of complicated theory (assumptions)!
   e.g. HMrstCh PT 
   e.g. 

5

FIG. 3: (color online) (top) Heat map of the correlation
matrix for ensemble C1. (bottom) Distribution of

correlations among the form factors for Bs ! K and
Bs ! ⌘s for all ensembles.

V. CHIRAL, CONTINUUM, AND KINEMATIC
EXTRAPOLATION

The results of HPChPT [4, 5] suggest a factorization,
to at least one-loop order, of the soft physics of logarith-
mic chiral corrections and the physics associated with
kinematics in the form factors describing semileptonic
decays of heavy mesons,

fk,?(E) = (1 + [logs]) Kk,?(E). (19)

The logarithmic chiral corrections, calculated in Ref. [5]
for several B(s) decays, are independent of E. An un-
specified function K characterizes the kinematics.

To obtain results over the full kinematic range one
must include lattice simulation data over a range of en-
ergies. However, for any relevant physical scale ⇤ (e.g.
⇤QCD, 1/r1, ⇤ChPT, . . . ), E >⇠ ⇤ at nominal lattice
momenta and there is no convergent expansion of the
unknown function K(E) in powers of E/⇤. This is an
inherent limitation of characterizing the kinematics in
terms of energy. The energy of the daughter meson is a
poor variable with which to describe the kinematics.
In contrast, the z-expansion [15–17] provides a con-

vergent, model-independent characterization of the kine-
matics over the entire kinematically accessible range.
Combining a z-expansion on each ensemble2 with the
HPChPT inspired factorization of Eq. (19) allows a si-
multaneous chiral, continuum, and kinematic extrapola-
tion of lattice data at arbitrary energies. Because the chi-
ral logs are the same for fk and f?, linear combinations
(i.e. f0 and f+) factorize in the same way and have the
same chiral logs. Motivated by these observations, we
construct a HPChPT-motivated modified z-expansion,
which we call the “HPChPT z-expansion”, and fit the
lattice data of Tables II and IX, with accompanying co-
variance matrix, to fit functions of the form

P0,+(q
2)f0,+(q

2) = (1 + [logs])

⇥
KX

k=0

a
(0,+)
k D

(0,+)
k z(q2)k, (20)

where [logs] are the continuum HPChPT logs of Ref. [5],
and generic analytic chiral and discretization e↵ects are
accounted for by Dk. Resonances above q2max but below
the BsK production threshold, i.e. those in the range
q2max < q2 < (MBs + MK)2, are accounted for via the
Blaschke factor, P = 1� q2/M2

res. Though not observed,
we allow for the possibility of a JP = 0+ state in P0, with
choice of mass guided by Ref. [13]. Our fit results are in-
sensitive to the presence of this state. The factorization
suggested by HPChPT may not hold at higher order [18]
so we allow chiral analytic terms, which help parameter-
ize e↵ects from omitted higher order chiral logs, to have
energy dependence (i.e. to vary with k).
We note that Eq. (20) is the modified z-expansion in-

troduced in Refs. [2, 3], with the coe�cients of the chiral
logarithmic corrections fixed by the results of HPChPT.
In the chiral and continuum limits

lim
m!m

physical

a!0

(1 + [logs]) akDk = bk of Ref. [17], (21)

and Eq. (20) is equivalent to the BCL parametriza-
tion [17] of the form factors.

2 This assumes the general arguments on which the z-expansion is
based hold for heavier than physical quark masses and at finite
lattice spacing.





Our approach to semi-leptonic decays



Our approach to semi-leptonic decays

‣ fixed kinematics (q2)
‣ improved Wilson fermions
‣ HQET at (N)LO for b-quark (NP matched)
‣ maybe separate chiral and continuum extrapolation  

‣ At the moment we have just a check 
- and still 2 dynamical quarks
- and only the leading order in 1/M
- and renormalisation only as 

(worry about PT exists) �QCD = CV(M/⇤)�RGI

3-loop PT



Semi-leptonic decays B! p`n , Bs! K`n

ub

d, s

B, Bs p, K

W�
`�

n̄`

Bs! K:
no experimental data yet – predictions
easier on the lattice (valence mK = mphys

K computationally less expensive
than for the p)
not far from B! p

⌦
K(pµ

K)
��V µ ��Bs(p

µ
Bs

)
↵

= f+(q2)


pµ

Bs
+pµ

K�
m2

Bs
�m2

K

q2 qµ
�
+ f0(q2)

m2
Bs
�m2

K

q2 qµ
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Experimental decay rates

d�

dq2 =
G2

F|Vub|2
192p3m3

Bs

l 3/2(q2)
��f+(q2)

��2

l(q2) =
�
m2

Bs +m2
K�q2�2�4m2

Bs m2
K

experimentally measured decay rate
form factor f+(q2) computed in LQCD
) determine Vub
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Parameterisation of f (q2)⇥Vub

Our ultimate plan:
BCL-Parameterisation [Bourrely, Caprini, Lellouch ’09] :

f+(q2) =
1

1�q2/m2
B⇤s

K�1

Â
k=0

bk


zk (q2)� (�1)k�K k

K
zK (q2)

�

Correlated, combined fit of our data and experimental data
Minimise c2 = c2

th + c2
exp

fit parameters bk ,Vub
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Extrapolations

At fixed q2, achieved by “twisting” [Bedaque ’04] the s quark:
y(x +Lk̂) = eiqk y(x)

~pq = (2p~n +~q)/L freely tuneable ! heavy quark twisting (keep Bs in rest frame)

continuum, a! 0
chiral, mp !mphys

p

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 8



Ensembles and simulation

non-perturbatively O(a) improved Wilson
fermions
Nf = 2 CLS ensembles
scale setting via fK [Fritzsch et al. ’12]

mpL & 4
Error estimates taking into account
autocorrelations [Schaefer et al. ’12]

[GeV  ]2m 2
π

a 
 [f

m
 ]

2
2

0.006

0.005

0.004

0.003

0.002

0.001

0
0.30.2 0.40.10

id T ⇥L3 a [fm] mp [MeV] mpL # meas. # target
A5 64⇥323 0.0749(8) 330 4.0 500 500
F6 96⇥483 0.0652(6) 310 5.0 254 500
N6 96⇥483 0.0483(4) 340 4.0 220 500

keep mK/fK = phys.
for now: one value of q2 only, q2 = 21.23GeV2
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Ensembles and simulation

non-perturbatively O(a) improved Wilson
fermions
Nf = 2 CLS ensembles
scale setting via fK [Fritzsch et al. ’12]

mpL & 4
Error estimates taking into account
autocorrelations [Schaefer et al. ’12]
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0.004
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keep mK/fK = phys.
for now: one value of q2 only, q2 = 21.23GeV2
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below a=0.045 fm: topological freezing with PBC



Obtaining the form factor

C{B,K} ⇠
b,u
s

t{B,K}

C3 ⇠ ub
s

tB tK

Ratio – plateaux

hK(pq
K)|V µ |Bs(0)i= lim

T ,tB,tK!•

C3
µ(tK, tB)

p
CK(tK)CB(tB)

eEKtK/2 eEBtB/2 ⌘ lim
T ,tB,tK!•

f ratio
µ (q2)

Factorising Fit

Combined fit to ground and first excited state of C3,CB

8
>><

>>:

C3
µ i(tB, tK) = Ân,m bi

(n)j(n,m)
µ k(m) e�E (n)

B tB e�E (m)
K tK , j(1,1)

µ ⇠ f+(q2)

CB
ij (tB) = Ân bi

(n)bj
(n) e�E (n)

B tB

CK(tK) = Âm(k(m))2 e�E (m)
K tK

Gaussian smearing, ysm
l (x) = (1+kD)Nityl(x), Nit $ wavefunctions

random noise sources, full time dilution
Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 10



Preliminary results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.8

0.9

1

1.1

1.2

1.3

1.4

tK/ fm

fra
tio

0

N6,p = (1,0,0),q = (0,0,0),µ = 0, tB = 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.8

0.9

1

1.1

1.2

1.3

1.4

tB/ fm

fra
tio

0

N6,p = (1,0,0),q = (0,0,0),µ = 0, tK = 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

tK/ fm

fra
tio

1

N6,p = (1,0,0),q = (0,0,0),µ = 1, tB = 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

tB/ fm

fra
tio

1

N6,p = (1,0,0),q = (0,0,0),µ = 1, tK = 20

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 11

fk

f?



Preliminary results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.8

0.9

1

1.1

1.2

1.3

1.4

tK/ fm

fra
tio

0

A5,p = (1,0,0),q = (�0.21,0,0),µ = 0, tB = 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.8

0.9

1

1.1

1.2

1.3

1.4

tB/ fm

fra
tio

0

A5,p = (1,0,0),q = (�0.21,0,0),µ = 0, tK = 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

tK/ fm

fra
tio

1

A5,p = (1,0,0),q = (�0.21,0,0),µ = 1, tB = 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

tB/ fm

fra
tio

1

A5,p = (1,0,0),q = (�0.21,0,0),µ = 1, tK = 15

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 12

fk

f?



Preliminary continuum extrapolation

Notes on f+(q2) from A5, F6 and N6

Felix Bahr, Anosh Joseph, Alberto Ramos, Hubert Simma and Rainer Sommer

(NIC, DESY)

(Internal Notes)

September 26, 2014

I. FORM FACTORS AND MATRIX ELEMENTS

The scalar and vector form factors, f0,+, can be used to parametrize the vector hadronic

matrix element of Bs ! K decay

hK|V µ|Bsi = f+

✓
p

µ
Bs

+ p

µ
K � M

2
Bs
�M

2
K

q

2
q

µ

◆
+ f0

M

2
Bs
�M

2
K

q

2
q

µ
, (1)

where V

µ = ū�

µ
b and q

µ = p

µ
Bs
� p

µ
K .

We can express the scalar and vector form factors in a more convenient way using fk,?

parametrization

hK|V µ|Bsi =
p

2MBs

✓
p

µ
Bs

MBs

fk + p

µ
?f?

◆
, (2)

where

p

µ
? = p

µ
K � p

µ
Bs

(pK · pBs)

M

2
Bs

. (3)

In the rest frame of Bs meson, the form factors fk,? can be related to the temporal and

spatial components of the hadronic vector matrix elements,

hK|V 0|Bsi =
p

2MBsfk, (4)

hK|V k|Bsi =
p

2MBsp
k
Kf?. (5)

The scalar and vector form factors are now related to fk,? through the relations

f0 =

p
2MBs

M

2
Bs
�M

2
K

�
(MBs � EK)fk + p

2
Kf?

�
, (6)

f+ =
1p

2MBs

�
fk + (MBs � EK)f?

�
, (7)

with pK the three-momentum of the K meson.
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Data
Extrapolations
Preliminary result

errors a bit large (sorry: preliminary)



A comparison

• HPQCD 2014  
a=0.09fm 
mpi=320MeV 
perturbative renormalization  

• ALPHA, preliminary 
continuum extrapolation  
mpi=340MeV 
NP  renormalization  

• RBC/UKQCD, preliminary 
chiral + continuum extrapol. 
perturbative renormalization!

!
!
 

17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22

1

1.2

1.4

1.6

1.8

2

2.2

q2/GeV2

f +

[HPQCD ’14]
this work Preliminary
RBC/UKQCD Preliminary

1



Preliminary conclusion (Vub puzzle)



Preliminary conclusion (Vub puzzle)

✓ form factors are rather stable (reliable)
✓ the puzzle remains
➡ theory for inclusive rate?
➡or new physics?



General conclusion 



General conclusion 

‣ NP HQET works in practice
‣ the Vub puzzle remains
‣ definitive results for phenomenology  

require more work (Nf=2+1, form factor B->pi)



Discussion 

I mean claryfing the NP!
approach (e.g. matching, discretization effects, how m itself is defined)!
and comparing with other methods. Expecially for the latter

request by Giulia Ricciardi



Ren match

Beyond the classical theory: Renormalization and Matching
at leading order in 1/m

a matrix element of A0:

QCD HQET in static approx.

ZA hf |A0(x)|iiQCD Z

stat
A (µ)hf |Astat

0 (x)|iistat
�QCD(m) �(µ)

I
m: mass of heavy quark (b) in some definition
(all other masses zero for simplicity)

I µ: arbitrary renormalization scale

I matching (equivalence):

�QCD(m) = e
Cmatch(m, µ)⇥ �(µ) +O(1/m)

e
Cmatch(m, µ) = 1 + c1(m/µ)ḡ2(µ) + . . .

Physical observables, such as FBs , are independent of renormalization scheme, scale.
) switch to Renormalization Group Invariants

Rainer Sommer An eaxample of the behavior of the perturbative series: heavy-mass-dependence in QCD and matching to HQET

Ren match

Better: change to RGI’s see e.g. [R.S., arXiv:1008.0710 ]

�RGI = exp

(
�

Z
ḡ(µ)

dx
�(x)

�(x)

)
�(µ) = ZRGI(g0)| {z }

known, LPHAA
Collaboration

⇥ �(g0)| {z }
bare ME

� : beta-fct

⌘
⇥
2b0ḡ(µ)

2 ⇤��0/2b0 exp

(
�

Z
ḡ(µ)

0
dx


�(x)

�(x)
�

�0
b0x

�)
�(µ)

�QCD = CPS(M/⇤)⇥ �RGI � : AD in HQET

CPS(M/⇤) = exp

(Z
g?(M/⇤)

dx
�match(x)

�(x)

)

with ⇤ : Lambda-para

⇤

M

= exp

(
�

Z
g?(M/⇤)

dx
1� ⌧(x)

�(x)

)
, ! g?(M/⇤) M : RGI quark mass

�match: describes the mass dependence
g?: µ = m? = m(m?) , g? = ḡ(m?)

Rainer Sommer An eaxample of the behavior of the perturbative series: heavy-mass-dependence in QCD and matching to HQET
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ḡ(µ)

dx
�(x)

�(x)

)
�(µ) = ZRGI(g0)| {z }

known, LPHAA
Collaboration

⇥ �(g0)| {z }
bare ME

� : beta-fct

⌘
⇥
2b0ḡ(µ)

2 ⇤��0/2b0 exp

(
�

Z
ḡ(µ)

0
dx


�(x)

�(x)
�

�0
b0x

�)
�(µ)

�QCD = CPS(M/⇤)⇥ �RGI � : AD in HQET

CPS(M/⇤) = exp

(Z
g?(M/⇤)

dx
�match(x)

�(x)

)

with ⇤ : Lambda-para

⇤

M

= exp

(
�

Z
g?(M/⇤)

dx
1� ⌧(x)

�(x)

)
, ! g?(M/⇤) M : RGI quark mass

�match: describes the mass dependence
g?: µ = m? = m(m?) , g? = ḡ(m?)
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in perturbation theory:
error = 

Intro NLO Tests NP HQET
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I power
corrections (↵(m))L
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need NP leading terms
to define power corrections

It is in general not enough to compute Wilson coe�cients in
perturbation theory
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NLO 1/M correction: 
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NLO correction undefined with perturbative C: 





In lattice regularisation:



In lattice regularisation:
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L



In lattice regularisation:
remains divergent 
at any order in PT
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In lattice regularisation:

Can’t use PT for c1 , c2

remains divergent 
at any order in PT
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Which mass do we expand in?

NP HQET

Intro NLO Tests NP HQET

HQET at the quantum level

Finite parts of the parameters !
i

need to be determined

I from experiments

) loose predictivity

I from non-perturbative QCD:

Matching

�HQET
i

({!
i

(g0, aMb)}) = �QCD
i

(Mb)

keep full predictivity if this can be achieved
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QCD RGI mass 
no ambiguity 
no scheme  

dependence 
 

equivalent to MSbar 
mass for 

bare parameters  
of HQET Lagrangian 

 
power divergent 

no direct physical  
relevance µ ! 1

Mass is a parameter, !
but only formally !

an expansion parameter



The confusion (maybe?)

‣ start with some “derivation” of HQET Lagrangian  
- integrating out 
- FTW trafo  
which is essentially classical, contains “the mass”     

‣ but this just serves to find/motivate the form of the Lagrangian 

‣ NP interpretation of the Lagrangian  
- operators of increasing dimension  
- with free coefficients  
 
- respecting the symmetries 

 

 

!
!
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need to be determined

I from experiments

) loose predictivity
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Matching
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i

({!
i

(g0, aMb)}) = �QCD
i

(Mb)

keep full predictivity if this can be achieved
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⇠ M�(dO�4)
b

any mass


