NP-HQET

R. Sommer

based on work of the ALPHA Collaboration

F. Bahr, F. Bernardoni, B. Blossier, J. Bulava, M. Della Morte, M. Donnellan, S. Dürr, P. Fritzsch, A. Gérardin, N. Garron, D. Hesse, J. Heitger, G. von Hippel, A. Jüttner, A. Joseph, H. B. Meyer, M. Papinutto, A. Ramos, J. Rolf, A. Shindler, H. Simma, T. Mendes

Why non-perturbative?

- EFTs such as HQET have power divergences

$$
(a M)^{-n}
$$

which must be subtracted non-perturbatively in order to have a continuum limit

- Power ($1 / \mathrm{M}$) corrections are only defined when the leading term is computed non-perturbatively
- late asymptotics of QCD perturbation theory for heavy-light physics

All of this is taken care of by NP HQET:
NP matching of HQET and QCD
No predictions are lost

$$
\mathcal{O}_{\text {kin }}(x)=\bar{\psi}_{\mathrm{h}}(x) \vec{D}^{2} \psi_{\mathrm{h}}(x)
$$

- power divergences

$$
\frac{g_{0}^{2 L}}{a^{n}} \sim \frac{1}{\log \left(a \Lambda_{\mathrm{QCD}}\right)^{L} a^{n}}
$$

need NP subtraction

$n=1,2$
e.g.

$$
\left(\mathcal{O}_{\text {kin }}\right)_{\mathrm{R}}(z)=Z_{\mathcal{O}_{\text {kin }}}\left(\mathcal{O}_{\text {kin }}(z)+\frac{c_{1}}{a} \bar{\psi}_{\mathrm{h}}(z) D_{0} \psi_{\mathrm{h}}(z)+\frac{c_{2}\left(g_{0}\right)}{a^{2}} \bar{\psi}_{\mathrm{h}}(z) \psi_{\mathrm{h}}(z)\right)
$$

- power
corrections

$$
(\alpha(m))^{L} \stackrel{m \rightarrow \infty}{\gg} \frac{\Lambda_{\mathrm{QCD}}}{m}
$$

need NP leading terms to define power corrections

It is in general not enough to compute Wilson coefficients in perturbation theory

Why non-perturbative?

- EFTs such as HQET have power divergences

$$
(a M)^{-n}
$$

which must be subtracted non-perturbatively in order to have a continuum limit

- Power ($1 / \mathrm{M}$) corrections are only defined when the leading term is computed non-perturbatively
- late asymptotics of QCD perturbation theory for heavy-light physics
discuss
a bit more

All of this is taken care of by NP HQET:
NP matching of HQET and QCD
No predictions are lost

On QCD PT for heavy-light systems

On QCD PT for heavy-light systems

at the leading order in $1 / \mathrm{M}$
mass dependence has a PT expansion

NP constant $\Phi_{\mathrm{RGI}}=\exp \left\{-\int^{\bar{g}(\mu)} \mathrm{d} \times \frac{\gamma(x)}{\beta(x)}\right\} \Phi(\mu)=\underbrace{Z_{\mathrm{RGI}}\left(g_{0}\right)}_{\text {known, } \boldsymbol{A}_{\text {ILPHA }}} \times \underbrace{\Phi\left(g_{0}\right)}_{\text {bare } \mathrm{ME}}$

$$
\begin{aligned}
& \Phi^{\mathrm{QCD}}=C_{\mathrm{PS}}(M / \Lambda) \times \Phi_{\mathrm{RGI}}+\mathrm{O}(1 / \mathrm{M}) \\
& \equiv\left[2 b_{0} \bar{g}(\mu)^{2}\right]^{-\gamma_{0} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d} x\left[\frac{\gamma(x)}{\beta(x)}-\frac{\gamma_{0}}{b_{0} x}\right]\right\} \Phi(\mu) \\
& \gamma: \text { AD in HQET } \\
& C_{\mathrm{PS}}(M / \Lambda)=\exp \left\{\int^{g_{\star}(M / \Lambda)} \mathrm{d} x \frac{\gamma_{\operatorname{match}}(x)}{\beta(x)}\right\} \\
& \text { with } \\
& \text { ^: Lambda-para } \\
& \frac{\Lambda}{M}=\exp \left\{-\int^{g_{\star}(M / \Lambda)} \mathrm{d} x \frac{1-\tau(x)}{\beta(x)}\right\}, \quad \rightarrow \quad g_{\star}(M / \Lambda) \\
& M: \text { RGI quark mass }
\end{aligned}
$$

$\gamma_{\text {match }}$: describes the mass dependence
$g_{\star}: \mu=m_{\star}=\bar{m}\left(m_{\star}\right), g_{\star}=\bar{g}\left(m_{\star}\right)$

Compare different orders

$$
1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / \mathrm{M}\right)
$$

We actually show
$C_{\Gamma / \Gamma^{\prime}}$
$=$ $C_{\text {match }}^{\Gamma}(m, \mu) / C_{\text {match }}^{\Gamma^{\prime}}(m, \mu)$
B-physics: $\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{b}} \approx 0.04$ $-1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{b}}\right) \approx 0.3$

Perturbation theory is badly behaved
for charm quarks very badly $-1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{c}}\right) \approx 0.5$

Compare different orders

We actually show
$C_{\Gamma / \Gamma^{\prime}}$
$=$ $C_{\text {match }}^{\Gamma}(m, \mu) / C_{\text {match }}^{\Gamma^{\prime}}(m, \mu)$

B-physics: $\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{b}} \approx 0.04$
$-1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{b}}\right) \approx 0.3$

Perturbation theory is badly behaved
for charm quarks very badly $-1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{c}}\right) \approx 0.5$

- b-mass not in asymptotic convergence region

Compare different orders

We actually show
$C_{\Gamma / \Gamma^{\prime}}$
$=$
$C_{\text {match }}^{\Gamma}(m, \mu) / C_{\text {match }}^{\Gamma^{\prime}}(m, \mu)$
B-physics: $\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{b}} \approx 0.04$
$-1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{b}}\right) \approx 0.3$

Perturbation theory is badly behaved
for charm quarks very badly
$-1 / \log \left(\Lambda_{\overline{\mathrm{MS}}} / M_{\mathrm{c}}\right) \approx 0.5$

- b-mass not in asymptotic convergence region
- This is a worry for perturbative matching and renormalisation

Compare extrapolation of QCD - direct static

P. Fritzsch, N. Garron and J. Heitger (not yet published): finite volume matrix elements of HL currents

(Based on continuum extrapolations)

Compare extrapolation of QCD - direct static

P. Fritzsch, N. Garron and J. Heitger (not yet published): finite volume matrix elements of HL currents

- picture looks different depending on the order of PT
- extrapolation to static limit not that convincing
- what error to associate to perturbative matching

NP HQET

Path integral with weight (directly on the lattice)

$$
\begin{aligned}
W_{\mathrm{HQET}} \equiv & \exp \left(-a^{4} \sum_{x}\left[\mathcal{L}_{\text {light }}(x)+\mathcal{L}_{\mathrm{h}}^{\text {stat }}(x)\right]\right) \\
& \times\left\{1+a^{4} \sum_{x}\left(\omega_{\text {kin }} \mathcal{O}_{\text {kin }}(x)+\omega_{\text {spin }} \mathcal{O}_{\text {spin }}(x)\right)\right\}
\end{aligned}
$$

This yields

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\langle\mathcal{O}\rangle_{\text {stat }}+\omega_{\text {kin }} a^{4} \sum_{x}\left\langle\mathcal{O} \mathcal{O}_{\text {kin }}(x)\right\rangle_{\text {stat }}+\omega_{\text {spin }} a^{4} \sum_{x}\left\langle\mathcal{O} \mathcal{O}_{\text {spin }}(x)\right\rangle_{\text {stat }} \\
& \equiv\langle\mathcal{O}\rangle_{\text {stat }}+\omega_{\text {kin }}\langle\mathcal{O}\rangle_{\text {kin }}+\omega_{\text {spin }}\langle\mathcal{O}\rangle_{\text {spin }}
\end{aligned}
$$

with

$$
\langle\mathcal{O}\rangle_{\text {stat }}=\frac{1}{\mathcal{Z}} \int_{\text {fields }} \mathcal{O} \exp \left(-a^{4} \sum_{x}\left[\mathcal{L}_{\text {light }}(x)+\mathcal{L}_{\mathrm{h}}^{\text {stat }}(x)\right]\right) \Leftarrow \begin{aligned}
& \text { renormalizable } \\
& \mathcal{L}_{\mathrm{h}}^{\text {stat }}= \\
& \bar{\psi}_{\mathrm{h}}\left[D_{0}+\delta m\right] \psi_{\mathrm{h}}
\end{aligned}
$$

The weight is expanded because then the theory is renormalizable

$$
\left[\mathcal{O}_{\text {kin }}(x)=\bar{\psi}_{\mathrm{h}}(x) \mathbf{D}^{2} \psi_{\mathrm{h}}(x), \quad \mathcal{O}_{\text {spin }}(x)=\bar{\psi}_{\mathrm{h}}(x) \boldsymbol{\sigma} \cdot \mathbf{B}(x) \psi_{\mathrm{h}}(x)\right]
$$

NP HQET

Path integral with weight (directly on the lattice)

$$
\begin{aligned}
W_{\mathrm{HQET}} \equiv & \exp \left(-a^{4} \sum_{x}\left[\mathcal{L}_{\text {light }}(x)+\mathcal{L}_{\mathrm{h}}^{\text {stat }}(x)\right]\right) \\
& \times\left\{1+a^{4} \sum_{x}\left(\omega_{\text {kin }} \mathcal{O}_{\text {kin }}(x)+\omega_{\text {spin }} \mathcal{O}_{\text {spin }}(x)\right)\right\}
\end{aligned}
$$

This yields
with

$$
\langle\mathcal{O}\rangle_{\text {stat }}=\frac{1}{\mathcal{Z}} \int_{\text {fields }} \mathcal{O} \notin \operatorname{xp}\left(-a^{4} \sum_{x}\left[\mathcal{L}_{\text {light }}(x)+\mathcal{L}_{\mathrm{h}}^{\text {stat }}(x)\right]\right) \quad \Leftarrow \begin{aligned}
& \text { renormalizable } \\
& \mathcal{L}_{\mathrm{h}}^{\text {stat }}= \\
& \bar{\psi}_{\mathrm{h}}\left[D_{0}+\delta m\right] \psi_{\mathrm{h}}
\end{aligned}
$$

The weight is expanded because then the theory is renormalizable

$$
\left[\mathcal{O}_{\text {kin }}(x)=\bar{\psi}_{\mathrm{h}}(x) \mathbf{D}^{2} \psi_{\mathrm{h}}(x), \quad \mathcal{O}_{\text {spin }}(x)=\bar{\psi}_{\mathrm{h}}(x) \boldsymbol{\sigma} \cdot \mathbf{B}(x) \psi_{\mathrm{h}}(x)\right]
$$

NP matching: QCD - HQET

NP matching: QCD - HQET
A finite volume, recursive strategy

NP matching: QCD - HQET

A finite volume, recursive strategy

NP matching: QCD = HQET

1. Lagrangian + currents

HQET
parameter free

HQET

parameters
$\Phi_{i}^{\mathrm{QCD}}\left(L, m_{\mathrm{h}}, 0\right)=\eta_{i}(L, a)+\varphi_{i}^{j}(L, a) \omega_{j}(M, a)+\mathcal{O}\left(1 / m_{\mathrm{h}}^{2}\right)$
$\left(M=m_{h}\right)$
structure:

$$
\varphi=\left(\begin{array}{c|c|c|c|c}
\varphi_{1}^{1} & * & * & 0 & 0 \\
\hline 0 & * & 0 & 0 & 0 \\
\hline 0 & * & * & 0 & 0 \\
\hline 0 & * & 0 & * & 0 \\
\hline 0 & * & 0 & 0 & *
\end{array}\right)
$$

notation from

NP matching: QCD - HQET

2. Example of a Φ_{i}

$$
\Phi^{\mathrm{QCD}} \sim-Z_{\mathrm{V}} \frac{F_{\mathrm{V}_{0}}(T / 2 ; \theta, z)}{\left[F_{1}^{\mathrm{ud}}(\theta) F_{1}^{\mathrm{bd}}(\theta, z)\right]^{1 / 2}}
$$

NP matching: QCD - HQET

3. complete set of parameters with heavy-light flavour currents

i	ω_{i}	origin
$1,2,3$	$m_{\text {bare }}, \omega_{\text {kin }}, \omega_{\text {spin }}$	$\mathscr{L}^{\mathrm{HQET}}$
$4, \ldots, 6$	$c_{\mathrm{A}_{0,1}}, c_{\mathrm{A}_{0,2}}, \ln Z_{A_{0}}^{\mathrm{HQET}}$	A_{0}^{HQET}
$7, \ldots, 11$	$c_{\mathrm{A}_{k, 1}}, c_{\mathrm{A}_{k, 2}}, c_{\mathrm{A}_{k, 3}}, c_{\mathrm{A}_{k, 4}}, \ln Z_{\overrightarrow{\mathrm{A}}}^{\mathrm{HQET}}$	A_{k}^{HQET}
$12 \ldots, 14$	$c_{\mathrm{V}_{0,1}}, c_{\mathrm{V}_{0,2}}, \ln Z_{V_{0}}^{\mathrm{HQET}}$	V_{0}^{HQET}
$15, \ldots, 19$	$c_{\mathrm{V}_{k, 1}}, c_{\mathrm{V}_{k, 2}}, c_{\mathrm{V}_{k, 3}}, c_{\mathrm{V}_{k, 4}}, \ln Z_{\overrightarrow{\mathrm{V}}}^{\mathrm{HQET}}$	V_{k}^{HQET}

Status

- determination of action, time component of axial current $\mathrm{N}_{\mathrm{f}}=2$
p strategy for action+all currents
- tree level investigation
- one-loop investigation
- decision on kinematical parameters
- results for
- quark mass, decay constants
- preliminary static computation for $\mathrm{B}_{\mathrm{s}}->\mathrm{K}$

Investigation of matching conditions

$$
\Phi^{\mathrm{QCD}}(z)=B+C \frac{1}{z}+O\left(1 / z^{2}\right) \quad X=X^{(0)}+X^{(1)} g^{2}+\ldots
$$

How large is $O\left(1 / z^{2}\right)$?

$$
B=\lim _{z \rightarrow \infty} \Phi^{\mathrm{QCD}}(z) \quad C=\lim _{z \rightarrow \infty} z\left[\Phi^{\mathrm{QCD}}(z)-B\right] \quad D=\lim _{z \rightarrow \infty} z^{2}\left[\Phi^{\mathrm{QCD}}(z)-B-C \frac{1}{z}\right]
$$

$$
\begin{equation*}
D^{(0)} / B^{(0)} \tag{1}
\end{equation*}
$$

Michele Della Morte, Samantha Dooling, Jochen Heitger, Dirk Hesse, Hubert Simma
JHEP 1405 (2014) 060 Hesse + S.; P. Korcyl (unpublished)

Investigation of matching conditions

$$
\Phi^{\mathrm{QCD}}(z)=B+C \frac{1}{z}+O\left(1 / z^{2}\right) \quad X=X^{(0)}+X^{(1)} g^{2}+\ldots
$$

How large is $O\left(1 / z^{2}\right)$?

$$
B=\lim _{z \rightarrow \infty} \Phi^{\mathrm{QCD}}(z) \quad C=\lim _{z \rightarrow \infty} z\left[\Phi^{\mathrm{QC}}(z)-B\right] \quad D=\lim _{z \rightarrow \infty} z^{2}\left[\Phi^{\mathrm{QCD}}(z)-B-C \frac{1}{z}\right]
$$

$$
D^{(0)} / B^{(0)}
$$

$D^{(1)} / B^{(0)}$

Michele Della Morte, Samantha Dooling, Jochen Heitger, Dirk Hesse, Hubert Simma
JHEP 1405 (2014) 060 Hesse + S.; P. Korcyl (unpublished)

Results: 1. A Summary of published results

Precision lattice QCD computation of the $B^{*} B \pi$ coupling
Fabio Bernardoni ${ }^{a}$, John Bulava ${ }^{b}$, Michael Donnellan ${ }^{a}$, Rainer Sommer ${ }^{a} \quad$ arXiv:1404.6951

The b-quark mass from non-perturbative $N_{\mathrm{f}}=2$ Heavy Quark Effective Theory at $\mathrm{O}\left(1 / m_{\mathrm{h}}\right)$

ALPHA Collaboration
Fabio Bernardoni ${ }^{\text {a }}$, Benoît Blossier ${ }^{\text {b }}$, John Bulava ${ }^{\text {c }}$, Michele Della Morte ${ }^{\text {d }}$, Patrick Fritzsch ${ }^{\mathrm{e}, *}$, Nicolas Garron ${ }^{\mathrm{c}}$, Antoine Gérardin ${ }^{\mathrm{b}}$, Jochen Heitger ${ }^{\mathrm{f}}$, Georg von Hippel ${ }^{\text {g }}$, Hubert Simma ${ }^{\text {a }}$, Rainer Sommer ${ }^{\text {a }}$

Physics Letters B 730 (2014) 171-177

Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks
ALPHA Collaboration
Fabio Bernardoni ${ }^{\text {a }}$, Benoît Blossier ${ }^{\text {b }}$, John Bulava ${ }^{\text {c }}$, Michele Della Morte ${ }^{\text {d,e }}$, Patrick Fritzsch ${ }^{\mathrm{f}, *}$, Nicolas Garron ${ }^{\text {c }}$, Antoine Gérardin ${ }^{\text {b }}$, Jochen Heitger ${ }^{\text {g }}$, Georg von Hippel ${ }^{\text {h }}$, Hubert Simma ${ }^{\text {a }}$, Rainer Sommer ${ }^{\text {a }}$

Physics Letters B 735 (2014) 349-356

Results: parameters, b-quark mass, $\mathrm{N}_{\mathrm{f}}=2$

$$
m_{\mathrm{B}, \delta}^{\mathrm{sub}}(z, y, a) \equiv m_{\mathrm{B}, \delta}\left(z, m_{\pi}, a\right)+\frac{3 \hat{g}^{2}}{16 \pi}\left(\frac{m_{\pi}^{3}}{f_{\pi}^{2}}-\frac{\left(m_{\pi}^{\exp }\right)^{3}}{\left(f_{\pi}^{\exp }\right)^{2}}\right)
$$

N_{f}	Ref.	M	$\bar{m}_{\overline{\mathrm{MS}}}\left(\bar{m}_{\overline{\mathrm{MS}}}\right)$	$\bar{m}_{\overline{\mathrm{MS}}}(4 \mathrm{GeV})$	$\bar{m}_{\overline{\mathrm{MS}}}(2 \mathrm{GeV})$	$\Lambda_{\overline{\mathrm{MS}}}[\mathrm{MeV}]$
0	$[36]$	$6.76(9)$	$4.35(5)$	$4.39(6)$	$4.87(8)$	$238(19)[69]$
2	this work	$6.58(17)$	$4.21(11)$	$4.25(12)$	$4.88(15)$	$310(20)[55]$
5	PDG13 [1]	$7.50(8)$	$4.18(3)$	$4.22(4)$	$4.91(5)$	$212(8)$

Results: 1. A Summary of published results

- determine parameters, determine the b-quark mass, $\mathrm{N}_{\mathrm{f}}=2$

Partial contributions $\left(\sigma_{\mathrm{i}} / \sigma\right)^{2}$ to the accumulated error σ of z_{b}. Only error sources contributing with a relative squared uncertainty $\left(\sigma_{\mathrm{i}} / \sigma\right)^{2}>0.5 \%$ are listed. The ensemble A3 did not appear in Table 1 since it enters through the scale setting procedure [54,55] only.

Source i	A3	G8	N5	N6	O7	$Z_{\text {A }}$	$\omega^{\text {HQET }}$
$\left(\sigma_{\mathrm{i}} / \sigma\right)^{2}[\%]$	1.2	0.9	2.6	5.9	5.6	20.6	61.6

Results: 1. A Summary of published results

- determine decay constants, $\mathrm{N}_{\mathrm{f}}=2$

Results: 1. A Summary of published results

- determine decay constants, $\mathrm{N}_{\mathrm{f}}=2$

$$
\begin{array}{lll}
f_{\mathrm{B}}^{\text {stat }}=190(5)(2)_{\chi} \mathrm{MeV}, & \frac{f_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }}}{f_{\mathrm{B}}^{\text {stat }}}=1.189(24)(30)_{\chi}, & f_{\mathrm{B}}=186(13) \mathrm{MeV}, \quad f_{\mathrm{B}_{\mathrm{S}}} / f_{\mathrm{B}}=1.203(65), \\
f_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }}=226(6)(9)_{\chi} \mathrm{MeV} . & & f_{\mathrm{B}_{\mathrm{s}}}=224(14) \mathrm{MeV} .
\end{array}
$$

- tiny NLO (1/M) corrections
- the same for the quark mass:

$$
\left[\bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\right)\right]^{\mathrm{stat}}=4.21(11) \mathrm{GeV} \quad \bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\right)=4.21(11) \mathrm{GeV}
$$

- there are other indications that HQET is an excellent (asymptotic) expansion for b-quarks at appropriate kinematics

There are more and interesting applications to come

From talk F. Bahr at CKM 2014 (last week):

Form factors for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K} \ell v$ decays in Lattice QCD

Felix Bahr

John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, D-15738 Zeuthen

September 10, 2014

In collaboration with: F. Bernardoni, J. Bulava, A. Joseph, A. Ramos, H. Simma, R. Sommer

$V_{\text {ub }}$ puzzle

- Determination of $\left|V_{\mathrm{ub}}\right|$
- $\sim 3 \sigma$ discrepancy [PDG] :
- Inclusive B $\rightarrow X_{u} \ell$:

$$
V_{\mathrm{ub}}=\left(4.41 \pm 0.15_{-0.17}^{+0.15}\right) \times 10^{-3}
$$

- Exclusive $B \rightarrow \pi \ell v: V_{\mathrm{ub}}=(3.28 \pm 0.29) \times 10^{-3}$
- from $B \rightarrow \tau \nu$ via $f_{B}: V_{\text {ub }}=(4.22 \pm 0.42) \times 10^{-3}$
- theoretical and experinental input needed
- This talk: Non-perturbative determination of form
factors for $\mathrm{B}_{\mathrm{g}} \rightarrow \mathrm{K} \ell v$ decay

Based on a lot of complicated theory (assumptions)
e.g. HMrstCh PT
e.g.

HPChPT inspired factorization of Eq. (19) allows a simultaneous chiral, continuum, and kinematic extrapolation of lattice data at arbitrary energies. Because the chi-

Our approach to semi-leptonic decays

Our approach to semi-leptonic decays

- fixed kinematics (q^{2})
- improved Wilson fermions
- HQET at (N)LO for b-quark (NP matched)
- maybe separate chiral and continuum extrapolation
- At the moment we have just a check
- and still 2 dynamical quarks
- and only the leading order in $1 / \mathrm{M}$
- and renormalisation only as (worry about PT exists) $\quad \Phi^{\mathrm{QCD}}=C_{\mathrm{V}}(M / \Lambda)$

Semi-leptonic decays $\mathrm{B} \rightarrow \pi \ell v, \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{K} \ell v$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$:

- no experimental data yet-predictions
- easier on the lattice (valence $m_{\mathrm{K}}=m_{\mathrm{K}}^{\text {phys }}$ computationally less expensive than for the π)
- not far from B $\rightarrow \pi$

$$
\left\langle\mathrm{K}\left(p_{\mathrm{K}}^{\mu}\right)\right| V^{\mu}\left|\mathrm{B}_{\mathrm{s}}\left(p_{\mathrm{B}_{\mathrm{s}}}^{\mu}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[p_{\mathrm{B}_{\mathrm{s}}}^{\mu}+p_{\mathrm{K}}^{\mu}-\frac{m_{\mathrm{B}_{\mathrm{s}}}^{2}-m_{\mathrm{K}}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{\mathrm{B}_{\mathrm{s}}}^{2}-m_{\mathrm{K}}^{2}}{q^{2}} q^{\mu}
$$

Experimental decay rates

$$
\begin{gathered}
\frac{d \Gamma}{d q^{2}}=\frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{s}}}^{3}} \lambda^{3 / 2}\left(q^{2}\right)\left|f_{+}\left(q^{2}\right)\right|^{2} \\
\lambda\left(q^{2}\right)=\left(m_{\mathrm{B}_{\mathrm{s}}}^{2}+m_{\mathrm{K}}^{2}-q^{2}\right)^{2}-4 m_{\mathrm{B}_{\mathrm{s}}}^{2} m_{\mathrm{K}}^{2}
\end{gathered}
$$

- experimentally measured decay rate
- form factor $f_{+}\left(q^{2}\right)$ computed in LQCD
- \Rightarrow determine V_{ub}

Parameterisation of $f\left(q^{2}\right) \times V_{\text {ub }}$

Our ultimate plan:
BCL-Parameterisation [Bourrely, Caprini, Lellouch '09] :

$$
f_{+}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{\mathrm{B}_{\mathrm{s}}^{*}}^{2}} \sum_{k=0}^{K-1} b_{k}\left[z^{k}\left(q^{2}\right)-(-1)^{k-K} \frac{k}{K} z^{K}\left(q^{2}\right)\right]
$$

- Correlated, combined fit of our data and experimental data
- Minimise $\chi^{2}=\chi_{\mathrm{th}}^{2}+\chi_{\mathrm{exp}}^{2}$
- fit parameters b_{k}, V_{ub}

Extrapolations

At fixed q^{2}, achieved by "twisting" [Bedaque '04] the s quark:
$\psi(x+L \hat{k})=\mathrm{e}^{\mathrm{i} \theta_{k}} \psi(x)$
$\vec{p}^{\theta}=(2 \pi \vec{n}+\vec{\theta}) / L$ freely tuneable \rightarrow heavy quark twisting (keep B_{s} in rest frame)

- continuum, $a \rightarrow 0$
- chiral, $m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$

Ensembles and simulation

- non-perturbatively $O(a)$ improved Wilson fermions
- $N_{f}=2$ CLS ensembles
- scale setting via f_{K} [Fritzsch et al. '12]
- $m_{\pi} L \gtrsim 4$
- Error estimates taking into account autocorrelations [Schaefer et al. '12]

id	$T \times L^{3}$	$a[\mathrm{fm}]$	$m_{\pi}[\mathrm{MeV}]$	$m_{\pi} L$	\# meas.	\# target
A5	64×32^{3}	$0.0749(8)$	330	4.0	500	500
F6	96×48^{3}	$0.0652(6)$	310	5.0	254	500
N6	96×48^{3}	$0.0483(4)$	340	4.0	220	500

- keep $m_{\mathrm{K}} / f_{\mathrm{K}}=$ phys.
- for now: one value of q^{2} only, $q^{2}=21.23 \mathrm{GeV}^{2}$

Ensembles and simulation

- non-perturbatively $O(a)$ improved Wilson fermions
- $N_{f}=2$ CLS ensembles
- scale setting via f_{K} [Fritzsch et al. '12]
- $m_{\pi} L \gtrsim 4$
- Error estimates taking into account autocorrelations [Schaefer et al. '12]

id	$T \times L^{3}$	$a[\mathrm{fm}]$	$m_{\pi}[\mathrm{MeV}]$	$m_{\pi} L$	\# meas.	\# target
A5	64×32^{3}	$0.0749(8)$	330	4.0	500	500
F6	96×48^{3}	$0.0652(6)$	310	5.0	254	500
N6	96×48^{3}	$0.0483(4)$	340	4.0	220	500
below a=0.045 fm: topological freezing with PBC						

- keep $m_{\mathrm{K}} / f_{\mathrm{K}}=$ phys.
- for now: one value of q^{2} only, $q^{2}=21.23 \mathrm{GeV}^{2}$

Obtaining the form factor

Ratio - plateaux

$\left\langle\mathrm{K}\left(p_{\mathrm{K}}^{\theta}\right)\right| V^{\mu}\left|\mathrm{B}_{\mathrm{s}}(0)\right\rangle=\lim _{T, t_{\mathrm{B}}, t_{\mathrm{K}} \rightarrow \infty} \frac{\mathcal{C}_{\mu}^{3}\left(t_{\mathrm{K}}, t_{\mathrm{B}}\right)}{\sqrt{\mathcal{C}^{\mathrm{K}}\left(t_{\mathrm{K}}\right) \mathcal{C}^{\mathrm{B}}\left(t_{\mathrm{B}}\right)}} \mathrm{e}^{E_{\mathrm{K}} t_{\mathrm{K}} / 2} \mathrm{e}^{E_{\mathrm{B}} t_{\mathrm{B}} / 2} \equiv \lim _{T, t_{\mathrm{B}}, t_{\mathrm{K}} \rightarrow \infty} f_{\mu}^{\text {ratio }}\left(q^{2}\right)$

Factorising Fit

Combined fit to ground and first excited state of $\mathcal{C}^{3}, \mathcal{C}^{B}$

$$
\begin{cases}\mathcal{C}_{\mu}^{3}\left(t_{\mathrm{B}}, t_{\mathrm{K}}\right) & =\sum_{n, m} \beta_{i}^{(n)} \varphi_{\mu}^{(n, m)} \kappa^{(m)} \mathrm{e}^{-E_{B}^{(n)} t_{\mathrm{B}}} \mathrm{e}^{-E_{K}^{(m)} t_{\kappa},} \quad \varphi_{\mu}^{(1,1)} \sim f_{+}\left(q^{2}\right) \\ \mathcal{C}_{j}^{\mathrm{B}}\left(t_{\mathrm{B}}\right) & =\sum_{n} \beta_{i}^{(n)} \boldsymbol{\beta}_{j}^{(n)} \mathrm{e}^{-E_{\mathrm{B}}^{(n)} t_{\mathrm{B}}} \\ \mathcal{C}_{\mathrm{K}}\left(t_{\mathrm{K}}\right) & =\sum_{m}\left(\kappa^{(m)}\right)^{2} \mathrm{e}^{-E_{\mathrm{K}}^{(m)} t_{k}}\end{cases}
$$

- Gaussian smearing, $\psi_{\mathrm{I}}^{\mathrm{sm}}(x)=(1+\kappa \Delta)^{N_{\mathrm{it}}} \psi_{\mathrm{I}}(x), N_{\mathrm{it}} \leftrightarrow$ wavefunctions
- random noise sources, full time dilution

Preliminary results

Preliminary results
 $A 5, p=(1,0,0), \theta=(-0.21,0,0), \mu=0, t_{\mathrm{B}}=15$

Preliminary continuum extrapolation

errors a bit large (sorry: preliminary)

A comparison

- HPQCD 2014
a=0.09fm $\mathrm{m}_{\mathrm{p} i}=320 \mathrm{MeV}$ perturbative renormalization
- ALPHA, preliminary continuum extrapolation $\mathrm{m}_{\mathrm{pi}}=340 \mathrm{MeV}$
NP renormalization
- RBC/UKQCD, preliminary chiral + continuum extrapol. perturbative renormalization

Preliminary conclusion (Vub puzzle)

Preliminary conclusion (Vub puzzle)

\checkmark form factors are rather stable (reliable)
\checkmark the puzzle remains

- theory for inclusive rate?
= or new physics?

General conclusion

General conclusion

- NP HQET works in practice
- the V_{ub} puzzle remains
- definitive results for phenomenology require more work ($\mathrm{N}_{\mathrm{f}}=2+1$, form factor $\mathrm{B}->\mathrm{pi}$)

Discussion

request by Giulia Ricciardi

I mean claryfing the NP approach (e.g. matching, discretization effects, how m itself is defined) and comparing with other methods. Expecially for the latter

$$
\begin{aligned}
& Z_{\mathrm{A}}\langle f| A_{0}(x)|i\rangle_{\mathrm{QCD}} \quad Z_{\mathrm{A}}^{\text {stat }}(\mu)\langle f| A_{0}^{\text {stat }}(x)|i\rangle_{\text {stat }} \\
& \Phi^{\mathrm{QCD}}(m) \quad \Phi(\mu) \\
& \boldsymbol{\Phi}_{\mathrm{RGI}}=\exp \left\{-\int^{\bar{g}(\mu)} \mathrm{d} \times \frac{\gamma(x)}{\beta(x)}\right\} \boldsymbol{\Phi}(\mu)=\underbrace{Z_{\mathrm{RGI}}\left(g_{0}\right)}_{\text {known }^{\overline{\mathbb{Z}}_{\text {LPGA }}}} \times \underbrace{\Phi\left(g_{0}\right)}_{\text {bare } \mathrm{ME}} \\
& \equiv\left[2 b_{0} \bar{g}(\mu)^{2}\right]^{-\gamma_{0} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d} x\left[\frac{\gamma(x)}{\beta(x)}-\frac{\gamma_{0}}{b_{0} x}\right]\right\} \boldsymbol{\Phi}(\mu) \\
& \Phi^{\mathrm{QCD}}=C_{\mathrm{PS}}(M / \Lambda) \times \Phi_{\mathrm{RGI}} \\
& C_{\mathrm{PS}}(M / \Lambda)=\exp \left\{\int^{g_{\star}(M / \Lambda)} \mathrm{d} x \frac{\gamma_{\operatorname{match}}(x)}{\beta(x)}\right\} \\
& \text { with } \\
& \frac{\Lambda}{M}=\exp \left\{-\int^{g_{\star}(M / \Lambda)} \mathrm{d} \times \frac{1-\tau(x)}{\beta(x)}\right\}, \quad \rightarrow \quad g_{\star}(M / \Lambda) \\
& \gamma \text { : AD in HQET } \\
& \Lambda \text { : Lambda-para } \\
& M \text { : RGI quark mass }
\end{aligned}
$$

$\Phi^{\mathrm{QCD}}=C_{\mathrm{PS}}(M / \Lambda) \times \Phi_{\mathrm{RGI}}$

in perturbation theory:

$$
\text { error }=(\alpha(m))^{L}
$$

NLO 1/M correction: $\frac{\Lambda_{\mathrm{QCD}}}{m}$

NLO correction undefined with perturbative C:

$$
(\alpha(m))^{L} \stackrel{m \rightarrow \infty}{\gg} \frac{\Lambda_{\mathrm{QCD}}}{m}
$$

In lattice regularisation:

In lattice regularisation:

power
divergences

$$
\frac{g_{0}^{2 L}}{a^{n}} \sim \frac{1}{\log \left(a \Lambda_{\mathrm{QCD}}\right)^{L} a^{n}} \quad \begin{aligned}
& \text { need NP } \\
& n=1,2
\end{aligned}
$$

need NP subtraction
e.g.

$$
\left(\mathcal{O}_{\text {kin }}\right)_{\mathrm{R}}(z)=Z_{\mathcal{O}_{\text {kin }}}\left(\mathcal{O}_{\text {kin }}(z)+\frac{c_{1}}{a} \bar{\psi}_{\mathrm{h}}(z) D_{0} \psi_{\mathrm{h}}(z)+\frac{c_{2}\left(g_{0}\right)}{a^{2}} \bar{\psi}_{\mathrm{h}}(z) \psi_{\mathrm{h}}(z)\right)
$$

remains divergent
In lattice regularisation:
power
divergences

$$
\frac{g_{0}^{2 L}}{a^{n}} \sim \frac{1}{\log \left(a \Lambda_{\mathrm{QCD}}\right)^{L} a^{n}} \quad \begin{aligned}
& \text { need NP } \\
& n=1,2
\end{aligned}
$$

need NP subtraction

e.g.

$$
\left(\mathcal{O}_{\text {kin }}\right)_{\mathrm{R}}(z)=Z_{\mathcal{O}_{\text {kin }}}\left(\mathcal{O}_{\text {kin }}(z)+\frac{c_{1}}{a} \bar{\psi}_{\mathrm{h}}(z) D_{0} \psi_{\mathrm{h}}(z)+\frac{c_{2}\left(g_{0}\right)}{a^{2}} \bar{\psi}_{\mathrm{h}}(z) \psi_{\mathrm{h}}(z)\right)
$$

remains divergent
In lattice regularisation:
e.g.

$$
\left(\mathcal{O}_{\text {kin }}\right)_{\mathrm{R}}(z)=Z_{\mathcal{O}_{\text {kin }}}\left(\mathcal{O}_{\text {kin }}(z)+\frac{c_{1}}{a} \bar{\psi}_{\mathrm{h}}(z) D_{0} \psi_{\mathrm{h}}(z)+\frac{c_{2}\left(g_{0}\right)}{a^{2}} \bar{\psi}_{\mathrm{h}}(z) \psi_{\mathrm{h}}(z)\right)
$$

Can't use PT for $\mathrm{c}_{1}, \mathrm{c}_{2}$

NP HQET
Mass is a parameter,
Which mass do we expand in? but only formally an expansion parameter

Matching

$$
\Phi_{i}^{\mathrm{HQET}}\left(\left\{\omega_{i}\left(g_{0}, \mathrm{a} M_{\mathrm{b}}\right)\right\}\right)=\Phi_{i}^{\mathrm{QCD}}\left(M_{\mathrm{b}}\right)
$$

bare parameters
of HQET Lagrangian
power divergent no direct physical relevance

QCD RGI mass
no ambiguity no scheme dependence
equivalent to MSbar mass for $\mu \rightarrow \infty$

The confusion (maybe?)

- start with some "derivation" of HQET Lagrangian
- integrating out
- FTW trafo
which is essentially classical, contains "the mass"
- but this just serves to find/motivate the form of the Lagrangian
- NP interpretation of the Lagrangian
- operators of increasing dimension
- with free coefficients

$$
\omega_{i}\left(g_{0}, a M_{b}\right)
$$

$$
\sim M_{\mathrm{b}}^{-\left(d_{O}-4\right)}
$$

- respecting the symmetries

